期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合式迁移学习的命名实体识别算法
1
作者 余肖生 张合欢 陈鹏 《计算机应用与软件》 北大核心 2024年第8期303-310,共8页
针对命名实体识别领域中大量标注数据难于获取而带来的问题,提出基于混合式迁移学习的命名实体识别算法——MT-NER。利用样本之间的距离作为权衡样本相似性的标准,进行样本迁移以扩充目标域样本;利用模型迁移建立带有finetune的新命名... 针对命名实体识别领域中大量标注数据难于获取而带来的问题,提出基于混合式迁移学习的命名实体识别算法——MT-NER。利用样本之间的距离作为权衡样本相似性的标准,进行样本迁移以扩充目标域样本;利用模型迁移建立带有finetune的新命名实体识别网络结构,用扩充后的目标域数据集来训练网络。以医疗领域为例的实验结果分析表明,MT-NER算法在小样本数据中的实体识别效果最佳,精度达到93.31%,召回率达到89.5%,F1值达到0.9317,与BiLSTM-CRF模型相比分别提升了6.33百分点、3.65百分点和0.0891。 展开更多
关键词 命名实体识别 迁移学习 双向lstm-crf 分布自适应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部