期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
《史记》历史事件自动抽取与事理图谱构建研究 被引量:29
1
作者 刘忠宝 党建飞 张志剑 《图书情报工作》 CSSCI 北大核心 2020年第11期116-124,共9页
[目的/意义]《史记》是我国第一部纪传体史书,几乎囊括黄帝时代到汉武帝元狩元年3000多年的重大历史事件。如何快速准确地发现这些历史事件及其之间的内在联系,对于透过历史现象、揭示历史实质以及发现历史规律具有重要意义。[方法/过程... [目的/意义]《史记》是我国第一部纪传体史书,几乎囊括黄帝时代到汉武帝元狩元年3000多年的重大历史事件。如何快速准确地发现这些历史事件及其之间的内在联系,对于透过历史现象、揭示历史实质以及发现历史规律具有重要意义。[方法/过程]在BERT模型和LSTM-CRF模型的基础上,提出面向《史记》的历史事件及其组成元素抽取方法,并基于此构建《史记》事理图谱。[结果/结论]实验结果表明,利用所提方法抽取历史事件及其组成元素的F1值分别达到0.823和0.760。通过事理图谱能够发现蕴含在《史记》中鲜为人知的知识,这为文献学、历史学、社会学等领域专家开展研究提供必要的资料准备。 展开更多
关键词 《史记》 历史事件抽取 事理图谱 BERT模型 双向长短期记忆网络 条件随机场
原文传递
基于深度学习的学术论文语步结构分类方法研究 被引量:21
2
作者 王末 崔运鹏 +1 位作者 陈丽 李欢 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第6期60-68,共9页
【目的】以深度学习语言表征模型学习论文句子表达,以此为基础构建论文语步分类模型,提高分类效果。【方法】采用基于深度学习预训练语言表征模型BERT,结合句子文中位置改进模型输入,以标注数据集进行迁移学习,获得句子级的嵌入表达,并... 【目的】以深度学习语言表征模型学习论文句子表达,以此为基础构建论文语步分类模型,提高分类效果。【方法】采用基于深度学习预训练语言表征模型BERT,结合句子文中位置改进模型输入,以标注数据集进行迁移学习,获得句子级的嵌入表达,并以此输入神经网络分类器训练分类模型,实现论文语步分类。【结果】基于公开数据集的实验结果表明,11类别分类任务中,总体准确率提高了29.7%,达到81.3%;在7类别核心语步分类任务中,准确率达到85.5%。【局限】受限于实验环境,所提改进输入模型的预训练参数来源于原始的模型结构,迁移学习的参数对于新模型输入的适用程度可进一步探索。【结论】该方法较传统的"特征构建+机器学习"分类器方法效果有大幅提高,较原始BERT模型亦有一定提高,且无须人工构建特征,模型不局限于特定语言,可应用于中文学术论文的语步分类任务,具有较大的实际应用潜力。 展开更多
关键词 语步分类 深度学习 双向编码器 神经网络
原文传递
基于BERT的社交电商文本分类算法 被引量:20
3
作者 李可悦 陈轶 牛少彰 《计算机科学》 CSCD 北大核心 2021年第2期87-92,共6页
随着网络购物的高速发展,网络商家和购物者在网络交易活动中产生了大量的交易数据,其中蕴含着巨大的分析价值。针对社交电商商品文本的文本分类问题,为了更加高效准确地判断文本所描述商品的类别,提出了一种基于BERT模型的社交电商文本... 随着网络购物的高速发展,网络商家和购物者在网络交易活动中产生了大量的交易数据,其中蕴含着巨大的分析价值。针对社交电商商品文本的文本分类问题,为了更加高效准确地判断文本所描述商品的类别,提出了一种基于BERT模型的社交电商文本分类算法。首先,该算法采用BERT(Bidirectional Encoder Representations from Transformers)预训练语言模型来完成社交电商文本的句子层面的特征向量表示,随后有针对性地将获得的特征向量输入分类器进行分类,最后采用社交电商文本的数据集进行算法验证。实验结果表明,经过训练的模型在测试集上的分类结果F1值最高可达94.61%,高出BERT模型针对MRPC的分类任务6%。因此,所提社交电商文本分类算法能够较为高效准确地判断文本所描述商品的类别,有助于进一步分析网络交易数据,从海量数据中提取有价值的信息。 展开更多
关键词 多标签文本分类 特征提取 模型构建 双向编码器 机器学习
下载PDF
结合BERT和BiSRU-AT的中文文本情感分类 被引量:6
4
作者 黄泽民 吴晓鸰 +1 位作者 吴迎岗 凌捷 《计算机工程与科学》 CSCD 北大核心 2021年第9期1668-1675,共8页
针对传统语言模型的词向量表示无法解决多义词表征的问题,以及现有情感分析模型不能充分捕获长距离语义信息的问题,提出了一种结合BERT和BiSRU-AT的文本情感分类模型BERT-BiSRU-AT。首先用预训练模型BERT获取融合文本语境的词向量表征;... 针对传统语言模型的词向量表示无法解决多义词表征的问题,以及现有情感分析模型不能充分捕获长距离语义信息的问题,提出了一种结合BERT和BiSRU-AT的文本情感分类模型BERT-BiSRU-AT。首先用预训练模型BERT获取融合文本语境的词向量表征;然后利用双向简单循环单元(BiSRU)二次提取语义特征和上下文信息;再利用注意力机制对BiSRU层的输出分配权重以突出重点信息;最后使用Softmax激励函数得出句子级别的情感概率分布。实验采用中文版本的推特数据集和酒店评论数据集。实验结果表明,结合BERT和BiSRU-AT的文本情感分析模型能够获得更高的准确率,双向简单循环模型和注意力机制的引入能有效提高模型的整体性能,有较大的实用价值。 展开更多
关键词 文本情感分析 语义特征 注意力机制 双向简单循环单元 双向解码器
下载PDF
基于时间序列对齐和TCNformer的重介精煤灰分多步预测
5
作者 王珺 王然风 +2 位作者 魏凯 韩杰 张茜 《工矿自动化》 CSCD 北大核心 2024年第5期60-66,共7页
由于在重介分选过程中各个传感器位置不同,导致重介分选主要工艺参数与灰分存在时间滞后,影响了精煤灰分结果。基于回归模型的灰分预测方法缺乏对时间序列信息的利用,无法捕捉重介生产过程随时间变化的动态特性;基于时间序列的灰分预测... 由于在重介分选过程中各个传感器位置不同,导致重介分选主要工艺参数与灰分存在时间滞后,影响了精煤灰分结果。基于回归模型的灰分预测方法缺乏对时间序列信息的利用,无法捕捉重介生产过程随时间变化的动态特性;基于时间序列的灰分预测方法未能充分考虑灰分和重介分选主要工艺参数之间的时间依赖关系。针对上述问题,提出了一种基于时间序列对齐和TCNformer的重介精煤灰分多步预测方法。通过滞后相关性分析来量化灰分与重介分选主要工艺参数之间的滞后步长,依此对重介分选主要工艺参数在时间维度上进行移动,使得灰分和重介分选主要工艺参数时间序列对齐,消除灰分和重介分选主要工艺参数之间的时间滞后。在Transformer模型的基础上,引入时间卷积网络(TCN)提取特征,并将单向编码器扩展为双向编码器,构建了TCNformer模型来实现精煤灰分多步预测。将时间序列对齐得到的与未来时刻灰分数据对应的过程变量序列作为解码器的输入,以提升模型预测精度。实验结果表明:该方法的平均绝对误差为0.1579%,均方根误差为0.2152%,平均皮尔逊相关系数为0.5051,能有效提升精煤灰分预测精度。 展开更多
关键词 重介分选 精煤灰分预测 滞后相关性 时间序列 TCNformer 双向编码器
下载PDF
基于BERT模型的中文短文本分类算法 被引量:79
6
作者 段丹丹 唐加山 +1 位作者 温勇 袁克海 《计算机工程》 CAS CSCD 北大核心 2021年第1期79-86,共8页
针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer的双向编码器表示(BERT)的中文短文本分类算法,使用BERT预训练语言模型对短文本进行句子层面的特征向量表示,并将获得的特征向量输入S... 针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer的双向编码器表示(BERT)的中文短文本分类算法,使用BERT预训练语言模型对短文本进行句子层面的特征向量表示,并将获得的特征向量输入Softmax回归模型进行训练与分类。实验结果表明,随着搜狐新闻文本数据量的增加,该算法在测试集上的整体F1值最高达到93%,相比基于TextCNN模型的短文本分类算法提升6个百分点,说明其能有效表示句子层面的语义信息,具有更好的中文短文本分类效果。 展开更多
关键词 中文短文本分类 基于Transformer的双向编码器表示 Softmax回归模型 TextCNN模型 word2vec模型
下载PDF
多神经网络协作的军事领域命名实体识别 被引量:35
7
作者 尹学振 赵慧 +2 位作者 赵俊保 姚婉薇 黄泽林 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第8期648-655,共8页
互联网公开数据蕴含着大量高价值的军事情报,成为获取开源军事情报的重要数据源之一。军事领域命名实体识别是进行军事领域信息提取、问答系统、知识图谱等工作的基础性关键任务。相比较于其他领域的命名实体,军事领域命名实体边界模糊... 互联网公开数据蕴含着大量高价值的军事情报,成为获取开源军事情报的重要数据源之一。军事领域命名实体识别是进行军事领域信息提取、问答系统、知识图谱等工作的基础性关键任务。相比较于其他领域的命名实体,军事领域命名实体边界模糊,界定困难;互联网媒体中军事术语表达不规范,随意性的简化表达现象较普遍;现阶段面向军事领域的公开语料鲜见。该文提出一种考虑实体模糊边界的标注策略,结合领域专家知识,构建了基于微博数据的军事语料集MilitaryCorpus;提出一种多神经网络协作的军事领域命名实体识别模型,该模型通过基于Transformer的双向编码器(bidirectional encoder representations from transformers, BERT)的字向量表达层获得字级别的特征,通过双向长短时记忆神经网络(bi-directional long short-term memory, BiLSTM)层抽取上下文特征形成特征矩阵,最后由条件随机场层(conditional random field, CRF)生成最优标签序列。实验结果表明:相较于基于CRF的实体识别模型,应用该文提出的BERT-BiLSTM-CRF模型召回率提高28.48%,F值提高18.65%;相较于基于BiLSTM-CRF的实体识别模型,该文模型召回率提高13.91%,F值提高8.69%;相较于基于CNN (convolutional neural networks)-BiLSTM-CRF的实体识别模型,该文模型召回率提高7.08%,F值提高5.15%。 展开更多
关键词 军事命名实体识别 双向偏码器(BERT) 模糊边界 多神经网络
原文传递
加入自注意力机制的BERT命名实体识别模型 被引量:26
8
作者 毛明毅 吴晨 +1 位作者 钟义信 陈志成 《智能系统学报》 CSCD 北大核心 2020年第4期772-779,共8页
命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对... 命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。 展开更多
关键词 命名实体识别 BERT 自注意力机制 深度学习 条件随机场 自然语言处理 双向长短期记忆网络 序列标注
下载PDF
基于BERT-BiLSTM-CRF的法律案件实体智能识别方法 被引量:19
9
作者 郭知鑫 邓小龙 《北京邮电大学学报》 EI CAS CSCD 北大核心 2021年第4期129-134,共6页
在智能法务系统应用中,人工智能自然语言处理相关技术常采用静态特征向量模型,算法效率低,精度偏差较大。为了对法律文本中的案件实体进行智能识别,提高案件的处理效率,针对动态字向量模型提出以基于转换器的双向编码表征模型作为输入... 在智能法务系统应用中,人工智能自然语言处理相关技术常采用静态特征向量模型,算法效率低,精度偏差较大。为了对法律文本中的案件实体进行智能识别,提高案件的处理效率,针对动态字向量模型提出以基于转换器的双向编码表征模型作为输入层的识别方法。在其基础上通过融合双向长短期记忆网络和条件随机场模型,构建了高精度的法律案件实体智能识别方法,并通过实验验证了模型的性能。 展开更多
关键词 自然语言处理 智能法务 基于转换器的双向编码表征模型
原文传递
基于BERT的水稻表型知识图谱实体关系抽取研究 被引量:18
10
作者 袁培森 李润隆 +1 位作者 王翀 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第5期151-158,共8页
针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,... 针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,基于双向转换编码表示模型(BERT)构建水稻表型组学关系抽取模型;最后,将BERT模型与卷积神经网络模型、分段卷积网络模型进行结果比较。结果表明,在3种关系抽取模型中,BERT模型表现更佳,精度达95.11%、F1值为95.85%。 展开更多
关键词 水稻表型 知识图谱 关系抽取 双向转换编码表示模型
下载PDF
结合BERT和特征投影网络的新闻主题文本分类方法 被引量:18
11
作者 张海丰 曾诚 +3 位作者 潘列 郝儒松 温超东 何鹏 《计算机应用》 CSCD 北大核心 2022年第4期1116-1124,共9页
针对新闻主题文本用词缺乏规范、语义模糊、特征稀疏等问题,提出了结合BERT和特征投影网络(FPnet)的新闻主题文本分类方法。该方法包含两种实现方式:方式1将新闻主题文本在BERT模型的输出进行多层全连接层特征提取,并将最终提取到的文... 针对新闻主题文本用词缺乏规范、语义模糊、特征稀疏等问题,提出了结合BERT和特征投影网络(FPnet)的新闻主题文本分类方法。该方法包含两种实现方式:方式1将新闻主题文本在BERT模型的输出进行多层全连接层特征提取,并将最终提取到的文本特征结合特征投影方法进行提纯,从而强化分类效果;方式2在BERT模型内部的隐藏层中融合特征投影网络进行特征投影,从而通过隐藏层特征投影强化提纯分类特征。在今日头条、搜狐新闻、THUCNews-L、THUCNews-S数据集上进行实验,实验结果表明上述两种方式相较于基线BERT方法在准确率、宏平均F1值上均具有更好的表现,准确率最高分别为86.96%、86.17%、94.40%和93.73%,验证了所提方法的可行性和有效性。 展开更多
关键词 预训练语言模型 文本分类 新闻主题 BERT 特征投影网络
下载PDF
基于BERT的常见作物病害问答系统问句分类 被引量:18
12
作者 杨国峰 杨勇 《计算机应用》 CSCD 北大核心 2020年第6期1580-1586,共7页
问句分类作为问答系统的关键模块,也是制约问答系统检索效率的关键性因素。针对农业问答系统中用户问句语义信息复杂、差异大的问题,为了满足用户快速、准确地获取常见作物病害问句的分类结果的需求,构建了基于BERT的常见作物病害问答... 问句分类作为问答系统的关键模块,也是制约问答系统检索效率的关键性因素。针对农业问答系统中用户问句语义信息复杂、差异大的问题,为了满足用户快速、准确地获取常见作物病害问句的分类结果的需求,构建了基于BERT的常见作物病害问答系统的问句分类模型。首先,对问句数据集进行预处理;然后,分别构建双向长短期记忆(Bi-LSTM)自注意力网络分类模型、Transformer分类模型和基于BERT的微调分类模型,并利用三种模型提取问句的信息,进行问句分类模型的训练;最后,对基于BERT的微调分类模型进行测试,同时探究数据集规模对分类结果的影响。实验结果表明,基于BERT的微调常见作物病害问句分类模型的分类准确率、精确率、召回率、精确率和召回率的加权调和平均值分别高于双向长短期记忆自注意力网络模型和Transformer分类模型2~5个百分点,在常见作物病害问句数据集(CCDQD)上能获得最高准确率92.46%,精确率92.59%,召回率91.26%,精确率和召回率的加权调和平均值91.92%。基于BERT的微调分类模型具有结构简单、训练参数少、训练速度快等特点,并能够高效地对常见作物病害问句准确分类,可以作为常见作物病害问答系统的问句分类模型。 展开更多
关键词 自然语言处理 BERT 作物病害 问答系统 问句分类
下载PDF
基于BERT的心血管医疗指南实体关系抽取方法 被引量:16
13
作者 武小平 张强 +1 位作者 赵芳 焦琳 《计算机应用》 CSCD 北大核心 2021年第1期145-149,共5页
实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专... 实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专病知识图谱实体关系抽取的专业数据集。基于该数据集,首先提出双向变形编码器卷积神经网络(BERT-CNN)模型以实现中文语料中的关系抽取,然后根据中文语义中主要以词而不是字为基本单位的特性,提出了改进的基于全词掩模的双向变形编码器卷积神经网络(BERT(wwm)-CNN)模型用于提升在中文语料中关系抽取的性能。实验结果表明,改进的BERT(wwm)-CNN在所构建的关系抽取数据集上准确率达到0.85,召回率达到0.80,F1值达到0.83,优于对比的基于双向变形编码器长短期记忆网络(BERT-LSTM)模型和BERT-CNN模型,验证了改进网络模型的优势。 展开更多
关键词 实体关系抽取 心血管疾病 双向变形编码器网络 卷积神经网络 知识图谱
下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:15
14
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换器的双向编码器表征技术(BERT) 卷积神经网络(CNN) 协同结构
下载PDF
融合BERT与标签语义注意力的文本多标签分类方法 被引量:14
15
作者 吕学强 彭郴 +2 位作者 张乐 董志安 游新冬 《计算机应用》 CSCD 北大核心 2022年第1期57-63,共7页
多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量... 多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量表示;然后,使用长短期记忆(LSTM)神经网络将标签进行单独编码;最后,利用注意力机制显性突出文本对每个标签的贡献,以预测多标签序列。实验结果表明,与基于序列生成模型(SGM)算法相比,所提出的方法在AAPD与RCV1-v2公开数据集上,F1值分别提高了2.8个百分点与1.5个百分点。 展开更多
关键词 多标签分类 BERT 标签语义信息 双向长短期记忆神经网络 注意力机制
下载PDF
端到端对话系统意图语义槽联合识别研究综述 被引量:15
16
作者 王堃 林民 李艳玲 《计算机工程与应用》 CSCD 北大核心 2020年第14期14-25,共12页
目前基于深度学习的端到端对话系统因具有泛化能力强、训练参数少、性能好等优势,在学术界和工业界成为了研究热点。意图识别和语义槽填充的结果对于对话系统的性能至关重要。介绍了端到端任务型对话系统意图和语义槽联合识别的主流方法... 目前基于深度学习的端到端对话系统因具有泛化能力强、训练参数少、性能好等优势,在学术界和工业界成为了研究热点。意图识别和语义槽填充的结果对于对话系统的性能至关重要。介绍了端到端任务型对话系统意图和语义槽联合识别的主流方法,对注意力机制、Transformer模型在捕获长期依赖关系方面的效果同循环神经网络、长短时记忆网络进行对比,并分析了因其并行处理导致无法对文本词序位置信息完整捕获的局限;阐述了胶囊网络相较于卷积神经网络在捕获小概率语义信息保证特征完整性方面的优势;重点介绍了基于BERT(Bidirectional Encoder Representations from Transformers)模型的联合识别方法,不仅能够并行处理而且可以解决一词多义的问题,是目前性能最好的方法。最后对未来研究的发展方向进行讨论和分析。 展开更多
关键词 意图识别 语义槽填充 联合识别 BERT模型 一词多义
下载PDF
结合BERT与BiGRU-Attention-CRF模型的地质命名实体识别 被引量:13
17
作者 谢雪景 谢忠 +5 位作者 马凯 陈建国 邱芹军 李虎 潘声勇 陶留锋 《地质通报》 CAS CSCD 北大核心 2023年第5期846-855,共10页
从地质文本中提取地质命名实体,对地质大数据的深度挖掘与应用具有重要意义。定义了地质命名实体的概念并制订了标注规范,设计了地质实体对象化表达模型。地质文本存在大量长实体、复杂嵌套实体,增加了地质命名实体识别的挑战性。针对... 从地质文本中提取地质命名实体,对地质大数据的深度挖掘与应用具有重要意义。定义了地质命名实体的概念并制订了标注规范,设计了地质实体对象化表达模型。地质文本存在大量长实体、复杂嵌套实体,增加了地质命名实体识别的挑战性。针对上述问题,①引入BERT模型生成顾及上下文信息的高质量词向量表征;②采用双向门控循环单元-注意力机制-条件随机场(BiGRU-Attention-CRF)对前一层输出的语义编码进行序列标注与解码。通过与主流深度学习模型进行对比,该模型的F1值为84.02%,均比其他模型表现出更优异的性能,能在小规模地质语料库上有较好的识别效果。 展开更多
关键词 命名实体识别 地质命名实体 BERT 注意力机制 BiGRU
下载PDF
基于BERT-BiGRU模型的文本分类研究 被引量:9
18
作者 王紫音 于青 《天津理工大学学报》 2021年第4期40-46,共7页
文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循... 文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循环单元(bidirectional encoder representations from transformers-bidirectional gate recurrent unit,BERT-BiGRU)模型结构,使用BERT模型代替传统的Word2vec模型表示词向量,根据上下文信息计算字的表示,在融合上下文信息的同时还能根据字的多义性进行调整,增强了字的语义表示。在BERT模型后面增加了BiGRU,将训练后的词向量作为Bi GRU的输入进行训练,该模型可以同时从两个方向对文本信息进行特征提取,使模型具有更好的文本表示信息能力,达到更精确的文本分类效果。使用提出的BERT-BiGRU模型进行文本分类,最终准确率达到0.93,召回率达到0.94,综合评价数值F1达到0.93。通过与其他模型的试验结果对比,发现BERT-BiGRU模型在中文文本分类任务中有良好的性能。 展开更多
关键词 文本分类 深度学习 基于编码器-解码器的双向编码表示法(bidirectional encoder representations from transformers BERT)模型 双向门控制循环单元(bidirectional gate recurrent unit BiGRU)
下载PDF
基于BERT和多头注意力的中文命名实体识别方法 被引量:11
19
作者 孙弋 梁兵涛 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期110-118,共9页
针对双向长短时记忆网络-条件随机场(bi-directional long short-term memory-conditional random field,BiLSTM-CRF)模型存在准确率低和向量无法表示上下文的问题,提出一种改进的中文命名实体识别模型。利用裁剪的双向编码器表征模型(b... 针对双向长短时记忆网络-条件随机场(bi-directional long short-term memory-conditional random field,BiLSTM-CRF)模型存在准确率低和向量无法表示上下文的问题,提出一种改进的中文命名实体识别模型。利用裁剪的双向编码器表征模型(bidirectional encoder representations from transformers,BERT)得到包含上下文信息的语义向量;输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络及多头自注意力层捕获序列的全局和局部特征;通过条件随机场(conditional random field,CRF)层进行序列解码标注,提取出命名实体。在人民日报和微软亚洲研究院(Microsoft research Asia,MSRA)数据集上的实验结果表明,改进模型在识别效果和速度方面都有一定提高;对BERT模型内在机理的分析表明,BERT模型主要依赖从低层和中层学习到的短语及语法信息完成命名实体识别(named entity recognition,NER)任务。 展开更多
关键词 命名实体识别 自注意力机制 BERT模型 双向门控循环单元 机理分析
下载PDF
基于BERT的中文简历命名实体识别 被引量:12
20
作者 郭军成 万刚 +1 位作者 胡欣杰 魏展基 《计算机应用》 CSCD 北大核心 2021年第S01期15-19,共5页
为了充分发掘中文简历数据中所蕴含的信息,提高构建社交网络知识图谱和档案知识图谱的实体丰富度,提出了基于BERT的中文简历命名实体识别技术。该技术模型首先通过BERT网络将大规模未标注文本生成具有语义特征的字符向量,接着通过嵌入... 为了充分发掘中文简历数据中所蕴含的信息,提高构建社交网络知识图谱和档案知识图谱的实体丰富度,提出了基于BERT的中文简历命名实体识别技术。该技术模型首先通过BERT网络将大规模未标注文本生成具有语义特征的字符向量,接着通过嵌入条件随机场(CRF)的双向长短时记忆(BiLSTM)神经网络模型获取输入文本序列的上下文特征,解码标注提取出相应的8个实体类型。实验结果表明,该网络模型在个人中文简历数据集上取得了97.07%的平均F1值,可以运用于中文简历数据的实体识别任务。 展开更多
关键词 条件随机场 中文实体识别 个人简历 BERT
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部