Cu bicrystals of different sizes with a sole twin boundary(TB) inclined at 45?with respect to the loading direction were deformed under unidirectional and cyclic loading, respectively. It is found that the slip ba...Cu bicrystals of different sizes with a sole twin boundary(TB) inclined at 45?with respect to the loading direction were deformed under unidirectional and cyclic loading, respectively. It is found that the slip bands(SBs) parallel to the TB can be activated near the TB at all scales without obeying the Schmid's law.It is concerned with the local stress enhancement in the macroscale while it is more closely related to the scarce dislocation sources in the microscale. Moreover, a wedge-shaped zone formed near the TB in the microscale ascribed to the limited specimen size.展开更多
综述了晶界理论的发展概况,包括相符点阵CSL(Coincidence Site Lattice)、O-点阵和DSC(Displacement Shift Completely)点阵等晶界模型的物理概念。对晶界研究的若干实验技术及其应用发展进行了简明介绍和评述。对晶界问题的当前研究动...综述了晶界理论的发展概况,包括相符点阵CSL(Coincidence Site Lattice)、O-点阵和DSC(Displacement Shift Completely)点阵等晶界模型的物理概念。对晶界研究的若干实验技术及其应用发展进行了简明介绍和评述。对晶界问题的当前研究动向进行了初步归纳。展开更多
Grain-boundary(GB) structures are commonly imaged as discrete atomic columns, yet the chemical modifications are gradual and extend into the adjacent lattices, notably the space charge, hence the two-dimensional def...Grain-boundary(GB) structures are commonly imaged as discrete atomic columns, yet the chemical modifications are gradual and extend into the adjacent lattices, notably the space charge, hence the two-dimensional defects may also be treated as continuum changes to extended interfacial structure. This review presents a spatially-resolved analysis by electron energy-loss spectroscopy of the GB chemical structures in a series of SrTiO3 bicrystals and a ceramic, using analytical electron microscopy of the pre-Cs-correction era. It has identified and separated a transient layer at the model Σ5 grain-boundaries(GBs) with characteristic chemical bonding, extending the continuum interfacial approach to redefine the GB chemical structure. This GB layer has evolved under segregation of iron dopant, starting from subtle changes in local bonds until a clear transition into a distinctive GB chemistry with substantially increased titanium concentration confined within the GB layer in 3-unit cells, heavily strained, and with less strontium. Similar segregated GB layer turns into a titania-based amorphous film in SrTiO3 ceramic, hence reaching a more stable chemical structure in equilibrium with the intergranular Ti2O3 glass also. Space charge was not found by acceptor doping in both the strained Σ5 and amorphous GBs in SrTiO3 owing to the native transient nature of the GB layer that facilitates the transitions induced by Fe segregation into novel chemical structures subject to local and global equilibria. These GB transitions may add a new dimension into the structure–property relationship of the electronic materials.展开更多
A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell inc...A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain boundary direction.展开更多
Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjo...Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjoining crystallites by changing their structure and geometry.The current study thus investigates the deformation behaviour of Mg bicrystals with 90°<1120>symmetric tilt boundary strained in plane-strain compression up to different final strains.Due to the initial soft orientation of the two crystals,activation of basal slip in each crystal gave rise to lattice rotation around the transverse direction towards the compression direction of the channel-die.Hundreds of single EBSD maps with a small step size were obtained from the GB region and stitched together to produce large panoramic maps of a macroscopic scale.Although very time-consuming,this technique has proven useful in clarifying the origin of the non-uniform deformation zones in the vicinity of the grain boundary and explains the mechanisms,by which the grain boundary was able to cope with the imposed strain before fracture.Interestingly,several variants of extension twins were observed as an additional deformation mechanism despite having negative Schmid factors.Systematic investigation of their resulting combined shear components with respect to the sample coordinate system revealed an alignment along the longitudinal direction of the channel-die,therefore justifying their nucleation.展开更多
Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjec...Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.展开更多
The rate dependent crystallographic finite element program was implemented in ABAQUS as a UMAT for the analysis of the stress distributions near grain boundary in anisotropic bicrystals and tricrystals, taking the dif...The rate dependent crystallographic finite element program was implemented in ABAQUS as a UMAT for the analysis of the stress distributions near grain boundary in anisotropic bicrystals and tricrystals, taking the different crystallographic orientations into consideration. The numerical results of bicrystals model with the different crystallographic orientations shows that there is a high stress gradient near the grain boundaries. The characteristics of stress structures are dependent on the crystallographic orientations of the two grains. The existing of triple junctions in the tricrystals may result in the stress concentrations,or may not, depending on the crystallographic orientations of the three grains. The conclusion shows that grain boundary with different crystallographic orientations can have different deformation, damage, and failure behaviors. So it is only on the detail study of the stress distribution can the metal fracture be understood deeply.展开更多
Based on the experimental results of the work-hardening processes of single crystals,the ac- commodation processes of polycrvstal deformation and the assumption of idealized polycrystal,the stress-strain relation of e...Based on the experimental results of the work-hardening processes of single crystals,the ac- commodation processes of polycrvstal deformation and the assumption of idealized polycrystal,the stress-strain relation of elasto-plastic deformation crystal was derived.The effect of orientation difference on the mechanical properties of the bicrvstalline specimens of aluminum was simulated by means of the finite element method(FEM)of elasto-plastic crystal.The results are in good agreement with the experimental results made by Clark and Chalmers in 1954.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 51171194, 51501197, 51571198, 51471170the IMR SYNL-T.S. Kê Research Fellowship
文摘Cu bicrystals of different sizes with a sole twin boundary(TB) inclined at 45?with respect to the loading direction were deformed under unidirectional and cyclic loading, respectively. It is found that the slip bands(SBs) parallel to the TB can be activated near the TB at all scales without obeying the Schmid's law.It is concerned with the local stress enhancement in the macroscale while it is more closely related to the scarce dislocation sources in the microscale. Moreover, a wedge-shaped zone formed near the TB in the microscale ascribed to the limited specimen size.
文摘综述了晶界理论的发展概况,包括相符点阵CSL(Coincidence Site Lattice)、O-点阵和DSC(Displacement Shift Completely)点阵等晶界模型的物理概念。对晶界研究的若干实验技术及其应用发展进行了简明介绍和评述。对晶界问题的当前研究动向进行了初步归纳。
基金supported by the National Natural Science Foundation of China(Grant No.51532006)the Fund from Shanghai Municipal Science and Technology Commission(Grant No.16DZ2260600)+1 种基金the 111 Project of the Ministry of Educationthe Fund from the National Bureau of Foreign Experts(Project No.D16002)
文摘Grain-boundary(GB) structures are commonly imaged as discrete atomic columns, yet the chemical modifications are gradual and extend into the adjacent lattices, notably the space charge, hence the two-dimensional defects may also be treated as continuum changes to extended interfacial structure. This review presents a spatially-resolved analysis by electron energy-loss spectroscopy of the GB chemical structures in a series of SrTiO3 bicrystals and a ceramic, using analytical electron microscopy of the pre-Cs-correction era. It has identified and separated a transient layer at the model Σ5 grain-boundaries(GBs) with characteristic chemical bonding, extending the continuum interfacial approach to redefine the GB chemical structure. This GB layer has evolved under segregation of iron dopant, starting from subtle changes in local bonds until a clear transition into a distinctive GB chemistry with substantially increased titanium concentration confined within the GB layer in 3-unit cells, heavily strained, and with less strontium. Similar segregated GB layer turns into a titania-based amorphous film in SrTiO3 ceramic, hence reaching a more stable chemical structure in equilibrium with the intergranular Ti2O3 glass also. Space charge was not found by acceptor doping in both the strained Σ5 and amorphous GBs in SrTiO3 owing to the native transient nature of the GB layer that facilitates the transitions induced by Fe segregation into novel chemical structures subject to local and global equilibria. These GB transitions may add a new dimension into the structure–property relationship of the electronic materials.
基金supported by National Natural Science Foundation of China(No.50575143)the Research Fund for the Doctoral Program of Higher Educa-tion (No.20040248005)
文摘A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain boundary direction.
基金The authors express their gratitude to the Deutsche Forschungsgemeinschaft(DFG)for financial support(MO 848/18-2)。
文摘Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjoining crystallites by changing their structure and geometry.The current study thus investigates the deformation behaviour of Mg bicrystals with 90°<1120>symmetric tilt boundary strained in plane-strain compression up to different final strains.Due to the initial soft orientation of the two crystals,activation of basal slip in each crystal gave rise to lattice rotation around the transverse direction towards the compression direction of the channel-die.Hundreds of single EBSD maps with a small step size were obtained from the GB region and stitched together to produce large panoramic maps of a macroscopic scale.Although very time-consuming,this technique has proven useful in clarifying the origin of the non-uniform deformation zones in the vicinity of the grain boundary and explains the mechanisms,by which the grain boundary was able to cope with the imposed strain before fracture.Interestingly,several variants of extension twins were observed as an additional deformation mechanism despite having negative Schmid factors.Systematic investigation of their resulting combined shear components with respect to the sample coordinate system revealed an alignment along the longitudinal direction of the channel-die,therefore justifying their nucleation.
基金supported by the Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ11-0Y)the National Basic Research Program of China (Grant No. 2010CB631005)the National Natural Science Foundation of China (Grant Nos. 11172148 and 51071094)
文摘Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.
文摘The rate dependent crystallographic finite element program was implemented in ABAQUS as a UMAT for the analysis of the stress distributions near grain boundary in anisotropic bicrystals and tricrystals, taking the different crystallographic orientations into consideration. The numerical results of bicrystals model with the different crystallographic orientations shows that there is a high stress gradient near the grain boundaries. The characteristics of stress structures are dependent on the crystallographic orientations of the two grains. The existing of triple junctions in the tricrystals may result in the stress concentrations,or may not, depending on the crystallographic orientations of the three grains. The conclusion shows that grain boundary with different crystallographic orientations can have different deformation, damage, and failure behaviors. So it is only on the detail study of the stress distribution can the metal fracture be understood deeply.
文摘Based on the experimental results of the work-hardening processes of single crystals,the ac- commodation processes of polycrvstal deformation and the assumption of idealized polycrystal,the stress-strain relation of elasto-plastic deformation crystal was derived.The effect of orientation difference on the mechanical properties of the bicrvstalline specimens of aluminum was simulated by means of the finite element method(FEM)of elasto-plastic crystal.The results are in good agreement with the experimental results made by Clark and Chalmers in 1954.