In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the po...In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.展开更多
As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is...As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.展开更多
文摘In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.
文摘As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.