期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8改进的服装疵点检测算法
1
作者 鲍禹辰 徐增波 田丙强 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第4期49-56,共8页
针对服装疵点检测方法,提出了基于YOLOv8改进的算法YOLOv8-MBRGA,用于完成服装疵点的检测任务。引入BiFPN金字塔替换head层中的concat连接,将语义信息传递到不同的特征尺度上,从而增强特征融合。为加速模型的收敛速度和推理速度,在检测... 针对服装疵点检测方法,提出了基于YOLOv8改进的算法YOLOv8-MBRGA,用于完成服装疵点的检测任务。引入BiFPN金字塔替换head层中的concat连接,将语义信息传递到不同的特征尺度上,从而增强特征融合。为加速模型的收敛速度和推理速度,在检测头上增加RepVGG网络,有助于更好地训练深层次的网络模型。采用分离卷积替换Conv卷积降低网络的复杂度并融入注意力机制EffectiveSE增强模型的特征提取和多尺度信息融合的能力。试验结果表明,YOLOv8-MBRGA算法在服装疵点检测上获得了显著的效果,平均精度均值提高了5.50%,精确度提高11.06%,在推理速度基本保持不变的情况下,模型的计算量下降30.48%。 展开更多
关键词 服装疵点 bifpn金字塔 RepVGG网络 YOLOv8
下载PDF
改进YOLOv5的复杂道路目标检测算法 被引量:28
2
作者 王鹏飞 黄汉明 王梦琪 《计算机工程与应用》 CSCD 北大核心 2022年第17期81-92,共12页
针对复杂道路背景下的密集遮挡目标和小目标导致的误检、漏检问题,提出一种基于改进YOLOv5的复杂道路目标检测算法。引入Quality Focal Loss,将分类得分与位置的质量预测结合,提高了对密集遮挡目标的定位精度;增加一层浅层检测层作为更... 针对复杂道路背景下的密集遮挡目标和小目标导致的误检、漏检问题,提出一种基于改进YOLOv5的复杂道路目标检测算法。引入Quality Focal Loss,将分类得分与位置的质量预测结合,提高了对密集遮挡目标的定位精度;增加一层浅层检测层作为更小目标的检测层,将原始算法的三尺度检测改为四尺度,特征融合部分也作相应改进,提高了算法对小目标特征的学习能力;借鉴加权双向特征金字塔网络(BiFPN)的特征融合思想,提出了去权重的BiFPN,充分利用深层、浅层以及原始的特征信息,加强了特征融合,减少了卷积过程中特征信息的丢失,提高了检测精度;引入卷积块注意模块(CBAM),进一步提升了算法的特征提取能力,让算法更关注有用的信息。实验结果表明,该改进算法在公开的自动驾驶数据集KITTI和自制的骑乘人员头盔数据集Helmet上的检测精度分别达到了94.9%和96.8%,相比原始算法分别提高了1.9个百分点和2.1个百分点的检测精度,检测速度分别达到了69 FPS和68 FPS,具有较好的检测精度与实时性,同时与一些主流的目标检测算法相比,该改进算法也有一定的优越性。 展开更多
关键词 复杂道路 YOLOv5 Quality Focal Loss 双向特征金字塔网络(bifpn) 卷积块注意模块(CBAM) 遮挡目标 小目标
下载PDF
YOLOv5算法的人脸识别检测方法研究 被引量:4
3
作者 宋传旗 《计算机时代》 2023年第7期15-19,共5页
以YOLOv5算法为核心,针对小尺度人脸的识别精准度不高问题进行研究。分析YOLOv5系统结构,研究加权双向特征金字塔网络(BiFPN)的特征融合思想,提出了权重的BiFPN,充分利用深层、浅层以及原始的特征信息,加强了特征融合,减少了卷积过程中... 以YOLOv5算法为核心,针对小尺度人脸的识别精准度不高问题进行研究。分析YOLOv5系统结构,研究加权双向特征金字塔网络(BiFPN)的特征融合思想,提出了权重的BiFPN,充分利用深层、浅层以及原始的特征信息,加强了特征融合,减少了卷积过程中特征信息的丢失,提高了检测精度。采用WiderFace人脸数据集进行改进前后对比训练,得出通过改进YOLOv5结构中的Neck部分,使得算法在少量增加计算量和参数量的情况下,人脸识别精准度(Precision)达到91.2%,召回率(Recall)达到83.4%,检测速度也有所加快。具有较好的检测度与实时性。 展开更多
关键词 人脸识别 双向特征金字塔网络bifpn YOLOv5 检测精度
下载PDF
一种改进YOLOX_S的火焰烟雾检测算法 被引量:2
4
作者 谢康康 朱文忠 +1 位作者 肖顺兴 谢林森 《科学技术与工程》 北大核心 2024年第8期3298-3307,共10页
针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对... 针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。 展开更多
关键词 YOLOX swin transformer 加权双向特征金字塔网络(bifpn) 火焰烟雾检测 注意力机制
下载PDF
融合Transformer的带钢缺陷实时检测算法 被引量:3
5
作者 张涛源 谢新林 +1 位作者 谢刚 张林 《计算机工程与应用》 CSCD 北大核心 2023年第16期232-239,共8页
在带钢的生产过程中通常会产生影响产品质量的表面缺陷。针对带钢表面缺陷检测效率低以及小目标缺陷检测精度差的问题,提出一种融合Transformer的带钢缺陷实时检测算法TRSD-YOLO(Transformer real-time strip steel defects detection-Y... 在带钢的生产过程中通常会产生影响产品质量的表面缺陷。针对带钢表面缺陷检测效率低以及小目标缺陷检测精度差的问题,提出一种融合Transformer的带钢缺陷实时检测算法TRSD-YOLO(Transformer real-time strip steel defects detection-YOLO)。设计一种结合Transformer自注意力机制的特征提取模块BottleNeckCSPTR,通过自注意力的增强来提升模块对小目标缺陷信息的获取能力;运用BottleNeckCSPTR模块构建新的主干特征提取网络CSPDarknetTR,并将动态激活函数Meta-ACON与主干网络相融合,进一步强化网络对缺陷特征的表示能力;提出一种轻量级双向加权特征金字塔结构BiFPN-Light作为融合多尺度特征的方式,提高网络对小尺寸缺陷的检测精度。实验结果表明,提出的算法在NEU-DET数据集上mAP达到了82.2%,较原有的YOLOv4算法提高了5.3个百分点;同时检测速度达到31.3 FPS,可匹配工业场景的需求。 展开更多
关键词 带钢缺陷检测 YOLOv4 TRANSFORMER 双向特征金字塔(bifpn)
下载PDF
基于改进YOLOv5s的田间移动障碍物检测 被引量:1
6
作者 侯艳林 艾尔肯·亥木都拉 李贺南 《现代电子技术》 北大核心 2024年第6期171-178,共8页
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和... 为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动端设备。 展开更多
关键词 移动型障碍物 YOLOv5s 无人农机 目标检测 CBAM注意力机制 双向特征金字塔网络(bifpn)
下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:1
7
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 YOLOv7算法 双向特征金字塔网络(bifpn) 注意力机制
下载PDF
改进YOLOv5的轻量化光伏热斑检测算法 被引量:2
8
作者 朱喆 黄勇 +2 位作者 来春庆 曾晓龙 刘泽纬 《机电工程技术》 2023年第8期16-21,96,共7页
针对光伏热斑检测中传统的算法模型复杂、在小目标检测任务中精度低、易出现漏检等问题,提出了一种轻量化的YOLOv5光伏热斑检测算法模型。首先采用MobileNetV3轻量化网络替换主干网络用来提取特征信息,降低整体网络模型的复杂程度;其次... 针对光伏热斑检测中传统的算法模型复杂、在小目标检测任务中精度低、易出现漏检等问题,提出了一种轻量化的YOLOv5光伏热斑检测算法模型。首先采用MobileNetV3轻量化网络替换主干网络用来提取特征信息,降低整体网络模型的复杂程度;其次在颈部网络中的特征融合中采用BiFPN金字塔网络进行多尺度特征融合;然后在整个模型中穿插引入CA坐标注意力机制,使模型更好地定位和识别目标特征信息;最后采用EIoU Loss来作为边框回归损失函数,加快模型训练的收敛速度。实验结果表明:在相同的光伏热斑数据集下,改进后的模型相比原模型在精准率、召回率、平均精准率方面的提升分别为3.2%、1.7%、2.6%,改进模型的参数量为原模型的47.9%,降低模型复杂程度的同时提升了热斑目标的检测效果。 展开更多
关键词 光伏热斑 YOLOv5s 轻量化网络 bifpn金字塔网络 坐标注意力机制 EIoU
下载PDF
氧化锌电阻片侧面绝缘涂层自动滚涂设备设计
9
作者 王鑫 向忠 《轻工机械》 CAS 2024年第3期92-99,107,共9页
为提高氧化锌电阻片的生产环节自动化水平,课题组设计了一种针对电阻片侧面绝缘涂层自动滚涂设备。设计了自动滚涂机构,由2个滚轴分别实现电阻片的滚涂和均匀刮抹;基于改进的YOLOv8模型的点位检测算法设计了基于视觉引导的拆垛机构,在YO... 为提高氧化锌电阻片的生产环节自动化水平,课题组设计了一种针对电阻片侧面绝缘涂层自动滚涂设备。设计了自动滚涂机构,由2个滚轴分别实现电阻片的滚涂和均匀刮抹;基于改进的YOLOv8模型的点位检测算法设计了基于视觉引导的拆垛机构,在YOLOv8中融入了动态稀疏注意力(bi-level routing attention, BRA)模块并将特征融合方式改为双向特征金字塔网络(bidirectional feature pyramid network, BiFPN)。与原有YOLOv8模型相比,改进的YOLOv8在识别精度上取得了显著的提升,平均均值精度(mean average precision, mAP)从92.8%提升至95.3%,从而在实际应用中降低了电阻片的漏检率和错检率,使漏检率相对减少了26.2%,错检率相对减少了33.3%。自动涂绝缘层设备为电阻片涂覆提供了高效的自动化解决方案。 展开更多
关键词 避雷器 电阻片 YOLOv8模型 BRA模块 bifpn模型
下载PDF
基于改进YOLOv5的小目标检测 被引量:5
10
作者 黎学飞 童晶 +2 位作者 陈正鸣 包勇 倪佳佳 《计算机系统应用》 2022年第12期242-250,共9页
本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对... 本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对于微小目标的检测能力.本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验,结果表明本文算法可以有效地检测小目标. 展开更多
关键词 小目标检测 注意力机制 特征融合 YOLOv5 bifpn
下载PDF
基于改进YOLOv8的道路缺陷检测
11
作者 李昊璇 苏艳琼 《测试技术学报》 2024年第5期506-512,共7页
针对道路缺陷小目标在复杂背景下检测精度低、漏检误检率高、泛化能力欠佳的问题,提出了一种改进YOLOv8的道路缺陷检测算法SGBNet。首先,Neck部分用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network, BiFPN)替换PANet,... 针对道路缺陷小目标在复杂背景下检测精度低、漏检误检率高、泛化能力欠佳的问题,提出了一种改进YOLOv8的道路缺陷检测算法SGBNet。首先,Neck部分用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network, BiFPN)替换PANet,提升模型的特征融合能力;其次,Neck引入全局注意力机制(Global Attention Machanism, GAM),在特征融合阶段进行注意力调整,提高检测精度;最后,添加小目标检测层,进一步增强深层语义信息与浅层语义信息的结合,提高对道路缺陷小目标的检测能力。与原始YOLOv8n算法相比,算法SGBNet的精确率、召回率和平均精度分别提升了3.3%, 2.5%和2.5%,实现了对道路缺陷更精准的检测。 展开更多
关键词 道路缺陷检测 双向特征金字塔网络(bifpn) 全局注意力机制(GAM) 小目标检测层
下载PDF
基于改进YOLOv5s的外脚手架隐患图像识别技术 被引量:1
12
作者 赵江平 刘星星 张想卓 《中国安全科学学报》 CAS CSCD 北大核心 2023年第12期60-66,共7页
为提高外脚手架安全管理的质量和效率,基于图像识别技术提出一种改进YOLOv5s的外脚手架隐患识别方法。首先,为解决背景信息过多造成的识别精度下降问题,在主干网络嵌入设计卷积注意模块(CBAM),获取隐患的各种细节特征;其次,改进原算法... 为提高外脚手架安全管理的质量和效率,基于图像识别技术提出一种改进YOLOv5s的外脚手架隐患识别方法。首先,为解决背景信息过多造成的识别精度下降问题,在主干网络嵌入设计卷积注意模块(CBAM),获取隐患的各种细节特征;其次,改进原算法颈部特征融合模块为加权双向特征金字塔网络(BiFPN)结构,有效处理外脚手架隐患目标尺寸分布不均衡造成的多尺度特征不平衡问题;然后,使用边界框损失函数斯库拉交并比(SIoU)Loss替换原损失函数;最后,通过消融试验分析改进模块对模型性能的影响,并与其他算法进行对比分析,验证隐患识别效果。结果表明:改进后的网络实现均值平均精度(mAP@05:095)评分提升513%,召回率提升345%,对多尺度、多目标及复杂背景下的外脚手架隐患具有良好的识别效果。 展开更多
关键词 YOLOv5s 外脚手架隐患 图像识别 多尺度特征 均值平均精度(mAP) 加权双向特征金字塔网络(bifpn)
下载PDF
基于FBEC-YOLOv5s的采掘工作面多目标检测研究
13
作者 张辉 苏国用 赵东洋 《工矿自动化》 CSCD 北大核心 2023年第11期39-45,共7页
针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特... 针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特征提取和语义信息捕捉能力;其次,在YOLOv5s模型颈部融合BiFPN网络,以通过其双向跨尺度连接和快速归一化融合操作,实现多尺度特征的快速捕捉与融合;最后,采用ECIoU损失函数代替CIoU损失函数,以提升检测框定位精度和模型收敛速度。实验结果表明:(1)在满足煤矿井下实时检测要求的同时,FBEC-YOLOv5s模型的准确率较YOLOv5s模型的准确率提升了3.6%。(2)与YOLOv5s模型相比,FBEC-YOLOv5s模型的平均检测精度均值上升了2.8%,平均检测精度均值为92.4%,能够满足实时检测要求。(3)FBEC-YOLOv5s模型的综合检测性能好,能够在恶劣环境、多目标间相互遮挡严重及目标尺度跨度大导致检测精度降低的情况下表现出良好的实时检测能力且具有较好的鲁棒性。 展开更多
关键词 采掘工作面 多目标检测 FasterNet网络 双向特征金字塔网络 YOLOv5s bifpn ECIoU损失函数
下载PDF
一种巡逻执勤目标检测算法研究
14
作者 岳磊 袁建虎 +1 位作者 杨柳 吕婷婷 《现代防御技术》 北大核心 2023年第1期67-74,共8页
巡逻执勤是具有重要意义的安全维稳行动,但是巡逻环境复杂、目标多样、检测难度大的问题十分突出,所以如何准确、实时检测巡逻执勤目标具有重大现实意义。为了提升对巡逻执勤目标检测的准确性和实时性,基于YOLOv5算法进行改进。为抑制... 巡逻执勤是具有重要意义的安全维稳行动,但是巡逻环境复杂、目标多样、检测难度大的问题十分突出,所以如何准确、实时检测巡逻执勤目标具有重大现实意义。为了提升对巡逻执勤目标检测的准确性和实时性,基于YOLOv5算法进行改进。为抑制巡逻环境带来的干扰,结合ECANet注意力机制进行改进,提高被检测目标显著性;同时为保证较好的实时性及多尺度目标检测能力,引入BiFPN网络结构。将改进算法与原始算法进行比较,mAP提升3.51%;与4种算法进行了对比实验,结果显示该算法能较好地降低巡逻执勤目标检测因检测相似、尺度多样、光照干扰等问题带来的影响,进一步验证了该算法在巡逻执勤目标检测任务中的有效性。 展开更多
关键词 目标检测 巡逻执勤 注意力机制 bifpn 深度学习 计算机视觉
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部