针对非原点最优的复杂优化问题(最优解不在坐标原点),提出了一种基于随机交叉-自学策略的教与学优化算法(teaching and learning optimization algorithm based on random crossover-self-study strategy,CSTLBO)。对标准教与学优化算...针对非原点最优的复杂优化问题(最优解不在坐标原点),提出了一种基于随机交叉-自学策略的教与学优化算法(teaching and learning optimization algorithm based on random crossover-self-study strategy,CSTLBO)。对标准教与学优化算法的“教阶段”和“学阶段”的空间扰动进行了几何解释,改进了原有的“教阶段”和“学阶段”,并引入随机交叉策略和“自学”策略来提高算法的全局寻优能力。通过使用20个Benchmark函数进行仿真,并与6种改进的教与学优化算法进行结果比较及Wilcoxon秩和检验分析,结果表明CSTLBO算法能有效避免陷入局部最优,具有良好的全局搜索能力,求解精度高,稳定性好。展开更多
文摘针对非原点最优的复杂优化问题(最优解不在坐标原点),提出了一种基于随机交叉-自学策略的教与学优化算法(teaching and learning optimization algorithm based on random crossover-self-study strategy,CSTLBO)。对标准教与学优化算法的“教阶段”和“学阶段”的空间扰动进行了几何解释,改进了原有的“教阶段”和“学阶段”,并引入随机交叉策略和“自学”策略来提高算法的全局寻优能力。通过使用20个Benchmark函数进行仿真,并与6种改进的教与学优化算法进行结果比较及Wilcoxon秩和检验分析,结果表明CSTLBO算法能有效避免陷入局部最优,具有良好的全局搜索能力,求解精度高,稳定性好。