BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,mul...随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。展开更多
BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and mediu...BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and medium earth orbit(MEO)satellite-based featured services in this paper.The former refers to regional services consisting of the regional short message communication service(RSMCS),the radio determination satellite service(RDSS),the BDS satellite-based augmented service(BDSBAS)and the satellite-based precise point positioning service via B2b signal(B2b-PPP).The latter refers to global services consisting of the global short message communication service(GSMCS)and the MEO satellite-based search and rescue(MEOSAR)service.The focus of this paper is to describe these featured services and evaluate their performances.The results show that the inter-satellite link(ISL)contributes a lot to the accuracy improvement of orbit determination and time synchronization for the whole constellation.Compared with some other final products,the root mean squares(RMS)of the BDS-3 precise orbits and broadcast clock are 25.1 cm and 2.01 ns,respectively.The positioning accuracy of single frequency is better than 6 m,and that of the generalized RDSS is usually better than 12 m.For featured services,the success rates of RSMCS and GSMCS are better than 99.9% and 95.6%,respectively;the positioning accuracies of single and dual frequency BDSBAS are better than 3 and 2 m,respectively;the positioning accuracy of B2b-PPP is better than 0.6 m,and the convergence time is usually smaller than 30 min;the single station test shows that the success rate of MEOSAR is better than 99%.Due to the ISL realization in the BDS-3 constellation,the performance and capacities of the global featured services are improved significantly.展开更多
随着北斗卫星导航系统的逐渐完善,有关北斗系统定位的研究越来越深入,为了对比分析北斗系统和全球定位导航系统(GPS)定位的差异性,充分利用北斗地球静止轨道卫星(GEO)和倾斜地球同步轨道卫星(IGSO)高轨道卫星的特殊性,本文提出一种新的...随着北斗卫星导航系统的逐渐完善,有关北斗系统定位的研究越来越深入,为了对比分析北斗系统和全球定位导航系统(GPS)定位的差异性,充分利用北斗地球静止轨道卫星(GEO)和倾斜地球同步轨道卫星(IGSO)高轨道卫星的特殊性,本文提出一种新的组合选星方法,选取卫星数较少且Position Dilution of Precision(PDOP)最小的北斗/GPS组合,分别对比分析北斗系统、GPS系统及其组合系统在楼顶开放环境和楼间恶劣环境下的定位效果。实验结果表明:北斗比GPS有更加稳定的定位效果,依据本文组合选星方法,利用少量卫星即可获得较好的定位精度。展开更多
为了实现低成本北斗滑坡地表形变自动化监测目的,本文研制了一套基于北斗云的新型滑坡实时监测系统。包括设计了具有无线传输、云端存储以及支持Ntrip(Networked Transport of RTCM via Internet Protocol)通过互联网进行RTCM网络传输协...为了实现低成本北斗滑坡地表形变自动化监测目的,本文研制了一套基于北斗云的新型滑坡实时监测系统。包括设计了具有无线传输、云端存储以及支持Ntrip(Networked Transport of RTCM via Internet Protocol)通过互联网进行RTCM网络传输协议)协议的北斗监测接收机,开发了高效的实时数据流管理软件和高精度滑坡形变监测软件,优化了外业施工设计方案,以千元终端机、自研定位软件辅以高效云计算的解决方案为低成本滑坡监测应用提供了可能。真实数值算例结果表明,短基线情形下北斗实时监测精度E方向(东方向)优于2 mm,N方向(北方向)优于2 mm,U方向(高程方向)优于3 mm,完全能够满足滑坡高精度实时监测需求。另外,本文还将滑坡区长期北斗连续监测结果与自动全站仪精密测量结果进行了对比,两者在水平方向和高程方向上符合度均优于3 mm,具有较好的一致性。展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
文摘随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。
基金supported by the National Natural Science Foundation of China(41931076,L1924033,and 41904042)National Key Research and Development Program of China(2020YFB0505800)。
文摘BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and medium earth orbit(MEO)satellite-based featured services in this paper.The former refers to regional services consisting of the regional short message communication service(RSMCS),the radio determination satellite service(RDSS),the BDS satellite-based augmented service(BDSBAS)and the satellite-based precise point positioning service via B2b signal(B2b-PPP).The latter refers to global services consisting of the global short message communication service(GSMCS)and the MEO satellite-based search and rescue(MEOSAR)service.The focus of this paper is to describe these featured services and evaluate their performances.The results show that the inter-satellite link(ISL)contributes a lot to the accuracy improvement of orbit determination and time synchronization for the whole constellation.Compared with some other final products,the root mean squares(RMS)of the BDS-3 precise orbits and broadcast clock are 25.1 cm and 2.01 ns,respectively.The positioning accuracy of single frequency is better than 6 m,and that of the generalized RDSS is usually better than 12 m.For featured services,the success rates of RSMCS and GSMCS are better than 99.9% and 95.6%,respectively;the positioning accuracies of single and dual frequency BDSBAS are better than 3 and 2 m,respectively;the positioning accuracy of B2b-PPP is better than 0.6 m,and the convergence time is usually smaller than 30 min;the single station test shows that the success rate of MEOSAR is better than 99%.Due to the ISL realization in the BDS-3 constellation,the performance and capacities of the global featured services are improved significantly.
文摘随着北斗卫星导航系统的逐渐完善,有关北斗系统定位的研究越来越深入,为了对比分析北斗系统和全球定位导航系统(GPS)定位的差异性,充分利用北斗地球静止轨道卫星(GEO)和倾斜地球同步轨道卫星(IGSO)高轨道卫星的特殊性,本文提出一种新的组合选星方法,选取卫星数较少且Position Dilution of Precision(PDOP)最小的北斗/GPS组合,分别对比分析北斗系统、GPS系统及其组合系统在楼顶开放环境和楼间恶劣环境下的定位效果。实验结果表明:北斗比GPS有更加稳定的定位效果,依据本文组合选星方法,利用少量卫星即可获得较好的定位精度。
文摘为了实现低成本北斗滑坡地表形变自动化监测目的,本文研制了一套基于北斗云的新型滑坡实时监测系统。包括设计了具有无线传输、云端存储以及支持Ntrip(Networked Transport of RTCM via Internet Protocol)通过互联网进行RTCM网络传输协议)协议的北斗监测接收机,开发了高效的实时数据流管理软件和高精度滑坡形变监测软件,优化了外业施工设计方案,以千元终端机、自研定位软件辅以高效云计算的解决方案为低成本滑坡监测应用提供了可能。真实数值算例结果表明,短基线情形下北斗实时监测精度E方向(东方向)优于2 mm,N方向(北方向)优于2 mm,U方向(高程方向)优于3 mm,完全能够满足滑坡高精度实时监测需求。另外,本文还将滑坡区长期北斗连续监测结果与自动全站仪精密测量结果进行了对比,两者在水平方向和高程方向上符合度均优于3 mm,具有较好的一致性。