In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, th...In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.展开更多
由于变桨轴承不完全转动的工作特殊性,基于振动或应变等常规监测手段难以奏效,为此提出一种基于声发射(acoustic emission,简称AE)技术监测方法获取信号,并采用短时傅里叶方法(short time Fourier transform,简称STFT)进行分析诊断的方...由于变桨轴承不完全转动的工作特殊性,基于振动或应变等常规监测手段难以奏效,为此提出一种基于声发射(acoustic emission,简称AE)技术监测方法获取信号,并采用短时傅里叶方法(short time Fourier transform,简称STFT)进行分析诊断的方法。首先,研究了AE技术的信号采集方法,推导了STFT的原理及过程,并在某风电机组变桨轴承上进行实验验证;其次,先后在时域、频域及时频域对有裂纹数据和无裂纹数据进行对比,发现时频域基于STFT分析方法可以有效发现裂纹;最后,通过新的裂纹数据进行验证,可以确认裂纹特征。结果表明:AE信号能较好地获取变桨轴承的状态信息,STFT分析方法可以较好地识别裂纹故障,较少受工况或其他因素的影响,有较高的实用价值。展开更多
基金supported by National Key Technology Research and Development Program (No. 2015BAA06B03)
文摘In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.
文摘由于变桨轴承不完全转动的工作特殊性,基于振动或应变等常规监测手段难以奏效,为此提出一种基于声发射(acoustic emission,简称AE)技术监测方法获取信号,并采用短时傅里叶方法(short time Fourier transform,简称STFT)进行分析诊断的方法。首先,研究了AE技术的信号采集方法,推导了STFT的原理及过程,并在某风电机组变桨轴承上进行实验验证;其次,先后在时域、频域及时频域对有裂纹数据和无裂纹数据进行对比,发现时频域基于STFT分析方法可以有效发现裂纹;最后,通过新的裂纹数据进行验证,可以确认裂纹特征。结果表明:AE信号能较好地获取变桨轴承的状态信息,STFT分析方法可以较好地识别裂纹故障,较少受工况或其他因素的影响,有较高的实用价值。