120 MeV电子直线加速器对于束流发射度有较高的要求,传统的光学准直难以满足需求。本文研究采用基于在线束流准直方法(Beam Based Alignment,BBA)以实现精度更高的准直,获得更好的束流性能。根据加速器结构配置情况,使用消色散校正法(Di...120 MeV电子直线加速器对于束流发射度有较高的要求,传统的光学准直难以满足需求。本文研究采用基于在线束流准直方法(Beam Based Alignment,BBA)以实现精度更高的准直,获得更好的束流性能。根据加速器结构配置情况,使用消色散校正法(Dispersion-free Steering Algorithm,DFS),对加速器束流匹配传输段在不同束流抖动情况下进行模拟计算。计算结果表明,DFS算法对于120 MeV电子直线加速器装置的束流准直应用效果良好。展开更多
Dalian Coherent Light Source will use a 300 MeV LINAC to produce fully coherent photon pulses in the wavelength range between 150–50 nm by high gain harmonic generation free electron laser(FEL) scheme. To generate ...Dalian Coherent Light Source will use a 300 MeV LINAC to produce fully coherent photon pulses in the wavelength range between 150–50 nm by high gain harmonic generation free electron laser(FEL) scheme. To generate stable FEL pulses, a stringent tolerance budget is required for the LINAC output parameters, such as the mean beam energy stability, electron bunch arrival time jitter, peak current variation and the transverse beam position ofset. In order to provide guidance for the design of the Dalian Coherent Light Source, in this paper, the sensitivity of FEL pulse energy fluctuation to various error sources of the electron bunch was performed using intensive start-to-end FEL simulations.展开更多
基金Supported by National Natural Science Foundation of China(21127902,11175240,11205234,11322550)Knowledge Innovation Program of Chinese Academy of Sciences
文摘Dalian Coherent Light Source will use a 300 MeV LINAC to produce fully coherent photon pulses in the wavelength range between 150–50 nm by high gain harmonic generation free electron laser(FEL) scheme. To generate stable FEL pulses, a stringent tolerance budget is required for the LINAC output parameters, such as the mean beam energy stability, electron bunch arrival time jitter, peak current variation and the transverse beam position ofset. In order to provide guidance for the design of the Dalian Coherent Light Source, in this paper, the sensitivity of FEL pulse energy fluctuation to various error sources of the electron bunch was performed using intensive start-to-end FEL simulations.