The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Se...The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Seas and make up a significant portion of the Chinese neritic squid catch. Beaks, the feeding organs of squid, are important for individual size and biomass estimation because of their high resistance to degradation in predator stomachs and consistent dimensions. In this study, 104 U. chinensis and 143 U. edulis individuals were sampled from northern South China Sea with mantle length from 70 to 260 mm and 96 to 284 mm, respectively. The results indicated that morphological beak values were greater for U. edulis, compared to U. chinensis, for upper hood length(UHL), upper crest length(UCL), upper lateral wall length(ULWL), lower crest length(LCL), and lower lateral wall length(LLWL). According to principal component analysis, UHL/ML, UCL/ML, ULWL/ML, LCL/ML, LLWL/ML and LWL/ML could represent the characteristics of beaks for U. chinensis, while UHL/ML, UCL/ML, ULWL/ML, LHL/ML, LCL/ML and LLWL/ML could represent it for U. edulis. According to Akaike's information criterion(AIC) values, a power function was the most suitable model for U. chinensis, while a linear function was the most suitable model for U. edulis. The beak variable-mantle length ratio(beak variable/mantle length) declined with the increasing of mantle length and declined sharply at the early stage of growth in both beaks and species. The ratio changed quickly after achieving the mantle length of 140 mm for U. chinensis, while the ratio changed quickly after 170 mm for U. edulis. Beaks in both species experienced sharper changes through maturity stage I to II than other maturity stages. This study gives us basic beak morphology information for U. chinensis and U. edulis in the East and South China Seas. Geometric morphological methods combined with dietary analysis should be used in the future.展开更多
The Humboldt squid Dosidicus gigas has a short life span, and environmental variability plays a significant role in regulating its population dynamics and distribution. An analysis of 1 096 samples of D. gigas collect...The Humboldt squid Dosidicus gigas has a short life span, and environmental variability plays a significant role in regulating its population dynamics and distribution. An analysis of 1 096 samples of D. gigas collected by the Chinese commercial fishing vessels during 2013, 2014, and 2016 off the Peruvian Exclusive Economic Zone, was conducted to evaluate the impacts of El Nino events on the somatic condition of D. gigas. This study indicates that the slopes of all beak variables in relation to mantle length (ML) for females were greater than those of males during 2013, 2014, and 2016, and slopes of the upper crest length and the lower rostrum length significantly differed between females and males in 2013 (P<0.05). Variation in the slopes for beak variables among years was studied;no significant difference was observed (ANCOVA, P>0.05). The Fulton's condition coefficients (K) of females and males in 2013 and 2014 were significantly greater than those in 2016 (P<0.01). The K values of females were greater than those of males in 2013, 2014, and 2016, and K values significantly differed between females and males in 2013. In normal years, the chlorophyll a (Chl a) concentration showed an N-shaped variability from January to December. However, in the El Nino period, it tended to weaken the upwelling coupled with warm and low Chl a concentration waters. We suggest that the poor somatic condition of D. gigas during the El Nino year was resulted from the low Chl a concentration in the waters, and the abundance of D. gigas would decrease due to the unfavourable environment and the lack of prey items in the El Nino year.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41306127,41276156)supported by SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘The mitre squid(U roteuthis chinensis) and the swordtip squid( U. edulis) are Indo-Pacific cephalopod species that are abundant in the western Pacific Ocean. They are currently exploited in the East and South China Seas and make up a significant portion of the Chinese neritic squid catch. Beaks, the feeding organs of squid, are important for individual size and biomass estimation because of their high resistance to degradation in predator stomachs and consistent dimensions. In this study, 104 U. chinensis and 143 U. edulis individuals were sampled from northern South China Sea with mantle length from 70 to 260 mm and 96 to 284 mm, respectively. The results indicated that morphological beak values were greater for U. edulis, compared to U. chinensis, for upper hood length(UHL), upper crest length(UCL), upper lateral wall length(ULWL), lower crest length(LCL), and lower lateral wall length(LLWL). According to principal component analysis, UHL/ML, UCL/ML, ULWL/ML, LCL/ML, LLWL/ML and LWL/ML could represent the characteristics of beaks for U. chinensis, while UHL/ML, UCL/ML, ULWL/ML, LHL/ML, LCL/ML and LLWL/ML could represent it for U. edulis. According to Akaike's information criterion(AIC) values, a power function was the most suitable model for U. chinensis, while a linear function was the most suitable model for U. edulis. The beak variable-mantle length ratio(beak variable/mantle length) declined with the increasing of mantle length and declined sharply at the early stage of growth in both beaks and species. The ratio changed quickly after achieving the mantle length of 140 mm for U. chinensis, while the ratio changed quickly after 170 mm for U. edulis. Beaks in both species experienced sharper changes through maturity stage I to II than other maturity stages. This study gives us basic beak morphology information for U. chinensis and U. edulis in the East and South China Seas. Geometric morphological methods combined with dietary analysis should be used in the future.
基金Supported by the National Natural Science Foundation of China(Nos.NSFC41306127,NSFC41276156)the National Science Foundation of Shanghai(No.13ZR1419700)+2 种基金the Innovation Program of Shanghai Municipal Education Commission(No.13YZ091)the Operational Application Project of Satellite Ocean Remote Sensing(No.201701004)the Shanghai Leading Academic Discipline Project(Fisheries Discipline)
文摘The Humboldt squid Dosidicus gigas has a short life span, and environmental variability plays a significant role in regulating its population dynamics and distribution. An analysis of 1 096 samples of D. gigas collected by the Chinese commercial fishing vessels during 2013, 2014, and 2016 off the Peruvian Exclusive Economic Zone, was conducted to evaluate the impacts of El Nino events on the somatic condition of D. gigas. This study indicates that the slopes of all beak variables in relation to mantle length (ML) for females were greater than those of males during 2013, 2014, and 2016, and slopes of the upper crest length and the lower rostrum length significantly differed between females and males in 2013 (P<0.05). Variation in the slopes for beak variables among years was studied;no significant difference was observed (ANCOVA, P>0.05). The Fulton's condition coefficients (K) of females and males in 2013 and 2014 were significantly greater than those in 2016 (P<0.01). The K values of females were greater than those of males in 2013, 2014, and 2016, and K values significantly differed between females and males in 2013. In normal years, the chlorophyll a (Chl a) concentration showed an N-shaped variability from January to December. However, in the El Nino period, it tended to weaken the upwelling coupled with warm and low Chl a concentration waters. We suggest that the poor somatic condition of D. gigas during the El Nino year was resulted from the low Chl a concentration in the waters, and the abundance of D. gigas would decrease due to the unfavourable environment and the lack of prey items in the El Nino year.