Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
RFPA-HF(Rock Failure Process Analysis-Hydraulic Fracturing)是基于有限元技术的模拟新方法,适用于模拟分析非均质岩石条件下压裂裂缝的起裂和扩展。通过对该方法的机理分析确定其针对非均质岩层压裂模拟的准确性,建立了一种新的细...RFPA-HF(Rock Failure Process Analysis-Hydraulic Fracturing)是基于有限元技术的模拟新方法,适用于模拟分析非均质岩石条件下压裂裂缝的起裂和扩展。通过对该方法的机理分析确定其针对非均质岩层压裂模拟的准确性,建立了一种新的细观单元渗流-应力-损伤耦合模型,并将其应用于滩坝砂储层压裂模拟中,取得良好结果。通过模拟得知在以薄互层为特点的滩坝砂储层中,对于垂直井和水平井来说,形成有效裂缝所需的压裂压力值差异不大,考虑产能因素应采用水平井开发。基于RFPA-HF技术的数值实验方法,对压裂相关设计、施工具有参考和指导意义。展开更多
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
文摘RFPA-HF(Rock Failure Process Analysis-Hydraulic Fracturing)是基于有限元技术的模拟新方法,适用于模拟分析非均质岩石条件下压裂裂缝的起裂和扩展。通过对该方法的机理分析确定其针对非均质岩层压裂模拟的准确性,建立了一种新的细观单元渗流-应力-损伤耦合模型,并将其应用于滩坝砂储层压裂模拟中,取得良好结果。通过模拟得知在以薄互层为特点的滩坝砂储层中,对于垂直井和水平井来说,形成有效裂缝所需的压裂压力值差异不大,考虑产能因素应采用水平井开发。基于RFPA-HF技术的数值实验方法,对压裂相关设计、施工具有参考和指导意义。