期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用3种贝叶斯模型研究鱼类空间分布的影响因素——以海州湾六丝钝尾虾虎鱼为例
1
作者 沈独清 张云雷 +6 位作者 崔晏华 于华明 张辰宇 徐宾铎 张崇良 纪毓鹏 薛莹 《海洋学报》 CAS CSCD 北大核心 2023年第11期88-100,共13页
栖息环境是生物生存的必要条件,生物与非生物因子共同影响海洋生物的空间分布。本研究以海州湾的六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)为例,利用3种贝叶斯模型对2013-2022年春、秋季在海州湾进行的渔业资源底拖网调查和环境监... 栖息环境是生物生存的必要条件,生物与非生物因子共同影响海洋生物的空间分布。本研究以海州湾的六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)为例,利用3种贝叶斯模型对2013-2022年春、秋季在海州湾进行的渔业资源底拖网调查和环境监测数据进行分析,探究六丝钝尾虾虎鱼的栖息分布特征以及主要影响因子。通过比较发现,贝叶斯正则化神经网络(BRNN)模型具有较好的拟合效果和预测性能,故本研究应用该模型进行分析。研究结果显示,六丝钝尾虾虎鱼的相对资源密度与饵料生物相对资源密度呈正相关关系;随着底层水温、底层盐度、水深、捕食者和竞争者的增加,六丝钝尾虾虎鱼的相对资源密度呈现先上升或保持相对平稳,而后下降的趋势。海州湾春、秋季六丝钝尾虾虎鱼的相对资源密度均呈现自西南向东北递减的趋势,且西南近岸浅海区的资源密度较高。秋季的资源密度高于春季,同时2018年、2021年和2022年秋季六丝钝尾虾虎鱼在34.7°~36°N、121°~121.6°E之间离岸较远的海域出现了资源聚集区。本研究将有助于深入了解六丝钝尾虾虎鱼的栖息分布特征及主要影响因素,为其资源养护和科学管理提供理论依据。 展开更多
关键词 贝叶斯模型 贝叶斯正则化神经网络模型 海州湾 六丝钝尾虾虎鱼 相对资源密度 栖息分布
下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
2
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A bayesian regularized BP neural network model sum of square weights
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部