期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
一种基于狄利克雷过程混合模型的文本聚类算法 被引量:10
1
作者 高悦 王文贤 杨淑贤 《信息网络安全》 2015年第11期60-65,共6页
随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个... 随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个难点。文章提出了一种基于狄利克雷过程混合模型的文本聚类算法,该算法基于非参数贝叶斯框架,可以将有限混合模型扩展成无限混合分量的混合模型,使用狄利克雷过程中的中国餐馆过程构造方式,实现了基于中国餐馆过程的狄利克雷混合模型,然后采用吉布斯采样算法近似求解模型,能够在不断的迭代过程中确定文本的聚类数目。实验结果表明,文章提出的聚类算法,和经典的K-means聚类算法相比,不仅能更好的动态确定文本主题聚类数目,而且该算法的聚类质量(纯度、F-score和轮廓系数)明显好于K-means聚类算法。 展开更多
关键词 文本聚类 狄利克雷过程混合模型 非参数贝叶斯 吉布斯采样
下载PDF
Dirichlet Process Gaussian Mixture Models:Choice of the Base Distribution 被引量:5
2
作者 Dilan Grür Carl Edward Rasmussen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2010年第4期653-664,共12页
In the Bayesian mixture modeling framework it is possible to infer the necessary number of components to model the data and therefore it is unnecessary to explicitly restrict the number of components. Nonparametric mi... In the Bayesian mixture modeling framework it is possible to infer the necessary number of components to model the data and therefore it is unnecessary to explicitly restrict the number of components. Nonparametric mixture models sidestep the problem of finding the "correct" number of mixture components by assuming infinitely many components. In this paper Dirichlet process mixture (DPM) models are cast as infinite mixture models and inference using Markov chain Monte Carlo is described. The specification of the priors on the model parameters is often guided by mathematical and practical convenience. The primary goal of this paper is to compare the choice of conjugate and non-conjugate base distributions on a particular class of DPM models which is widely used in applications, the Dirichlet process Gaussian mixture model (DPGMM). We compare computational efficiency and modeling performance of DPGMM defined using a conjugate and a conditionally conjugate base distribution. We show that better density models can result from using a wider class of priors with no or only a modest increase in computational effort. 展开更多
关键词 bayesian nonparametrics Dirichlet processes Gaussian mixtures
原文传递
ROBUST RVM BASED ON SPIKE-SLAB PRIOR 被引量:2
3
作者 Ding Xinghao Mi Zengyuan +1 位作者 Huang Yue Jin Wenbo 《Journal of Electronics(China)》 2012年第6期593-597,共5页
Although Relevance Vector Machine (RVM) is the most popular algorithms in machine learning and computer vision, outliers in the training data make the estimation unreliable. In the paper, a robust RVM model under non-... Although Relevance Vector Machine (RVM) is the most popular algorithms in machine learning and computer vision, outliers in the training data make the estimation unreliable. In the paper, a robust RVM model under non-parametric Bayesian framework is proposed. We decompose the noise term in the RVM model into two components, a Gaussian noise term and a spiky noise term. Therefore the observed data is assumed represented as: where is the relevance vector component, of which is the kernel function matrix and is the weight matrix, is the spiky term and is the Gaussian noise term. A spike-slab sparse prior is imposed on the weight vector which gives a more intuitive constraint on the sparsity than the Student's t-distribution described in the traditional RVM. For the spiky component a spike-slab sparse prior is also introduced to recognize outliers in the training data effectively. Several experiments demonstrate the better performance over the RVM regression. 展开更多
关键词 Relevance Vector Machine (RVM) bayesian nonparametric OUTLIERS Spike-slab sparse prior
下载PDF
非参数Bayesian字典学习的遥感影像融合方法
4
作者 李丽 《成都大学学报(自然科学版)》 2021年第2期149-154,160,共7页
针对现有高光谱成像技术因硬件条件限制而较难获取兼具高光谱及高空间分辨率高光谱影像的问题,提出一种基于非参数Bayesian字典学习的高光谱与多光谱影像空谱融合方法.该方法将目标影像的融合问题投影转换至较低维度的子空间内:首先,利... 针对现有高光谱成像技术因硬件条件限制而较难获取兼具高光谱及高空间分辨率高光谱影像的问题,提出一种基于非参数Bayesian字典学习的高光谱与多光谱影像空谱融合方法.该方法将目标影像的融合问题投影转换至较低维度的子空间内:首先,利用Beta-Bernoulli process的非参数Bayesian方法对观测影像进行字典学习,建立各隐变量的概率分布模型,使用Gibbs抽样方法来计算字典元素的后验分布;然后,采用正交匹配追踪算法进行稀疏系数学习;最后,采用交替方向乘子对目标图像及对应的稀疏系数进行交替优化更新,通过最小化目标函数来最大化目标影像的估计值.实验结果表明,方法因加入了更多的先验信息而获得较高的定量评价指标及目视效果,具有一定的普适性. 展开更多
关键词 高光谱影像 多光谱影像 影像融合 非参数bayesian 正交匹配追踪
下载PDF
无限最大间隔线性判别投影模型
5
作者 文伟 曹雪菲 +4 位作者 陈渤 韩勋 张学峰 王鹏辉 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2017年第12期2795-2802,共8页
针对具有多模分布结构的高维数据的分类问题,该文提出一种无限最大间隔线性判别投影(i MMLDP)模型。与现有全局投影方法不同,模型通过联合Dirichlet过程及最大间隔线性判别投影(MMLDP)模型将数据划分为若干个局部区域,并在每一个局部学... 针对具有多模分布结构的高维数据的分类问题,该文提出一种无限最大间隔线性判别投影(i MMLDP)模型。与现有全局投影方法不同,模型通过联合Dirichlet过程及最大间隔线性判别投影(MMLDP)模型将数据划分为若干个局部区域,并在每一个局部学习一个最大边界线性判别投影分类器。组合各局部分类器,实现全局非线性的投影与分类。i MMLDP模型利用贝叶斯框架联合建模,将聚类、投影及分类器进行联合学习,可以有效发掘数据的隐含结构信息,因而,可以较好地对非线性可分数据,尤其是具有多模分布特性数据进行分类。得益于非参数贝叶斯先验技术,可以有效避免模型选择问题,即局部区域划分数量。基于仿真数据集、公共数据集及雷达实测数据集验证了所提方法的有效性。 展开更多
关键词 最大间隔线性判别投影 非参数贝叶斯 Dirichlet过程混合模型
下载PDF
台风最大风速预测的高斯过程回归模型 被引量:6
6
作者 王鑫 李红丽 《计算机应用研究》 CSCD 北大核心 2015年第1期59-62,共4页
针对影响台风最大风速的输入变量较多以及输入变量与输出变量之间的非线性变化特点,首先计算各个输入变量与输出变量间的互信息,这些互信息间接地反映了各个输入变量与输出变量间的相关性;然后根据t检验法确定一个阈值,对于互信息小于... 针对影响台风最大风速的输入变量较多以及输入变量与输出变量之间的非线性变化特点,首先计算各个输入变量与输出变量间的互信息,这些互信息间接地反映了各个输入变量与输出变量间的相关性;然后根据t检验法确定一个阈值,对于互信息小于阈值的输入变量作不相关变量处理,筛选出最佳的模型输入变量;最后采用高斯过程回归模型对筛选后的样本集进行拟合,在贝叶斯非参数建模的框架下,确定高斯过程回归模型的协方差函数。仿真结果表明,所得高斯过程模型能够满足绝对误差的预定要求,且具有较大的实用价值。 展开更多
关键词 高斯过程 回归分析 贝叶斯非参数模型 特征选择 互信息
下载PDF
面向复杂主题建模的流式层次狄里克雷过程 被引量:6
7
作者 韩忠明 张梦玫 +2 位作者 李梦琪 段大高 陈谊 《计算机学报》 EI CSCD 北大核心 2019年第7期1539-1552,共14页
互联网已经成为真实事件信息的主要来源.针对互联网海量新闻语料的主题挖掘是新闻事件的组织和追踪任务中关键的一环.主题模型已被广泛应用于挖掘和分析新闻等文本语料,LDA(Latent Dirichlet Allocation)是最常见的主题模型,然而现有基... 互联网已经成为真实事件信息的主要来源.针对互联网海量新闻语料的主题挖掘是新闻事件的组织和追踪任务中关键的一环.主题模型已被广泛应用于挖掘和分析新闻等文本语料,LDA(Latent Dirichlet Allocation)是最常见的主题模型,然而现有基于LDA的方法没有考虑到主题之间的层次关系,且需要预先提供主题个数.作为LDA模型的扩展,层次狄里克雷过程(Hierarchical Dirichlet Process,HDP)是非参数贝叶斯主题模型,HDP能够自动确定主题个数.对于具有层次等特性的复杂主题,HDP难以挖掘出隐式层次结构,且容易产生噪音主题.为了解决这个问题,该文提出了基于HDP改进的非参数贝叶斯模型:流式层次狄里利克雷过程(Flow Hierarchical Dirichlet Process,FHDP),FHDP通过在HDP模型中加入流动操作,加强了对主题之间的同属领域信息的利用,以便于更好的对主题进行层次分析.利用加入了流动操作的中国连锁餐馆模型(Chinese Restaurant Franchise,CRF)对数据进行建模,设计相应的马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)采样方法,以推导FHDP模型的分布参数分布.FHDP的主要贡献在于:(1)对含有层次关系的主题建模时,减少了无意义信息.解决了HDP得到主题不明确的问题,扩大了HDP的应用领域;(2)由于在FHDP中加强了对主题隐含领域信息的利用,主题的层次关系变得更加明确.为了客观衡量FHDP和HDP的性能差异,利用模拟和真实数据进行了大量实验.实验表明,在轮廓系数、主题覆盖度、单字对数似然等指标上,FHDP模型明显优于HDP模型。 展开更多
关键词 层次狄里克雷过程 主题模型 非参数贝叶斯模型 马尔可夫蒙特卡罗 流式层次狄里克雷过程
下载PDF
苯酚含量预测的高斯过程回归模型 被引量:3
8
作者 王鑫 李红丽 《自动化仪表》 CAS 北大核心 2014年第5期1-3,共3页
长期准确预测苯酚含量对双酚A生产过程的控制起着至关重要的作用。作为一种贝叶斯非参数模型,高斯过程本质上非常适合对长期持续的复杂过程进行建模。为此,提出一种基于高斯过程回归的苯酚含量预测模型。通过对高斯过程回归模型的协方... 长期准确预测苯酚含量对双酚A生产过程的控制起着至关重要的作用。作为一种贝叶斯非参数模型,高斯过程本质上非常适合对长期持续的复杂过程进行建模。为此,提出一种基于高斯过程回归的苯酚含量预测模型。通过对高斯过程回归模型的协方差函数的选择与优化,在苯酚含量预测中取得了较好的测试结果。此外,采用ROC准则对生产过程的6个输入特征进行排序,并选择影响力较大的3个特征作为模型的输入变量,从而提高了模型的可解释性。 展开更多
关键词 高斯过程 回归分析特征排序 贝叶斯非参数模型 估计精度
下载PDF
基于改进动态系统稳定估计器的机器人技能学习方法 被引量:1
9
作者 金聪聪 刘安东 +1 位作者 LIU Steven 张文安 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1771-1781,共11页
提出一种基于改进动态系统稳定估计器的机器人技能学习方法.现有的动态系统稳定估计器方法可以通过非线性优化来确保学习系统的全局稳定性,但是存在确定高斯混合分量个数困难以及稳定性和精度无法兼顾的问题.因此,根据贝叶斯非参数模型... 提出一种基于改进动态系统稳定估计器的机器人技能学习方法.现有的动态系统稳定估计器方法可以通过非线性优化来确保学习系统的全局稳定性,但是存在确定高斯混合分量个数困难以及稳定性和精度无法兼顾的问题.因此,根据贝叶斯非参数模型可以自动确定合适分量个数的特性,采用狄利克雷过程高斯混合模型对演示进行初始拟合.随后利用参数化二次李雅普诺夫函数重新推导新的稳定性约束,有效地解决了动态系统稳定估计器方法中稳定性和精度难以兼顾的问题.最后,在LASA数据库和Franka-panda机器人上的实验验证了新方法的有效性和优越性. 展开更多
关键词 示教学习 动态系统 贝叶斯非参数模型 高斯混合模型 李雅普诺夫函数
下载PDF
线性动态系统噪声辨识的非参数贝叶斯推理算法研究 被引量:1
10
作者 雷菊阳 许海翔 +1 位作者 黄克 史习智 《噪声与振动控制》 CSCD 北大核心 2008年第6期69-72,共4页
提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由... 提出一新的非参数贝叶斯推理算法来辨识任意复杂的多模噪声分布,采用无穷维推理技术,能够较为精确地逼近噪声的后验分布。算法主要引入一随机度量分布满足一预设的先验过程——混合Dirichlet过程(Dirichlet Process Mixture,简称DPM),由于DPM具有形似于Polya urn的采样特性,能够很方便地对噪声数据进行聚类,并导出噪声的后验分布。仿真结果显示,噪声数据似然的Metropolis-Hastings(M-H)的采样算法比点估计的系统分析算法精度高。 展开更多
关键词 振动与波 非参数贝叶斯推理 噪声辨识 Dirichlet过程混合 吉布斯采样
下载PDF
Dirichlet过程及非参数Bayes模型 被引量:1
11
作者 张钧曦 胡耀忠 《中国科学:数学》 CSCD 北大核心 2021年第11期1895-1932,共38页
自从Ferguson的里程碑式的工作以来,非参数Bayes模型在统计和机器学习等领域中有着广泛的应用,近年来得到了蓬勃的发展.它的一个重要的理论基础是一个特殊的随机概率测度族,即Dirichlet过程.本文介绍Dirichlet过程的构造、性质、推广以... 自从Ferguson的里程碑式的工作以来,非参数Bayes模型在统计和机器学习等领域中有着广泛的应用,近年来得到了蓬勃的发展.它的一个重要的理论基础是一个特殊的随机概率测度族,即Dirichlet过程.本文介绍Dirichlet过程的构造、性质、推广以及它在非参数Bayes估计问题中的应用.另外,本文也提到双参数Poisson-Dirichlet过程、Beta过程和更一般的断棍(stick-breaking)过程以及相关性质. 展开更多
关键词 Dirichlet过程 断棍过程 双参数Poisson-Dirichlet过程 POISSON过程 中国餐馆模型 印度自助餐模 非参数Bayes模型 U-统计量
原文传递
非监督式层次话题情感模型在网络评论主题发现中的应用
12
作者 陈永恒 姚桂杰 林耀进 《东北石油大学学报》 CAS 北大核心 2015年第1期112-117,8,共6页
自动发现话题的隐含结构、情感的极性及其关系,可以方便用户从海量网络评论集中快速获得他们关注的主要观点.提出一种基于非监督式的层次话题的情感(Unsupervised Level Aspect-Sentiment,ULAS)模型,利用贝叶斯非参数性模型作为先验知识... 自动发现话题的隐含结构、情感的极性及其关系,可以方便用户从海量网络评论集中快速获得他们关注的主要观点.提出一种基于非监督式的层次话题的情感(Unsupervised Level Aspect-Sentiment,ULAS)模型,利用贝叶斯非参数性模型作为先验知识,实现非监督式发现未标记评论文本集话题的层次结构,分析层次话题的情感极性.实验结果表明,相比传统的JST和ASUM模型,ULAS模型具备较高的分类精确度和较强的模型泛化能力,能够解决传统话题情感模型只能在单一粒度话题层进行情感分析的问题,实现多粒度话题层的情感分析,满足用户对于评论对象不同粒度话题的情感信息需求. 展开更多
关键词 非监督式层次话题情感模型 隐藏狄利克雷分配 文本分析 网络评论 主题发现 主题模型 非参贝叶斯模型
下载PDF
基于Dirichlet过程混合的高斯过程模型混合采样推理
13
作者 雷菊阳 黄克 +1 位作者 许海翔 史习智 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第2期271-275,共5页
提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案... 提出了基于Dirichlet过程混合的高斯过程模型揭示复杂动态系统结构数据的多态性的内在机制.针对均值结构与协方差结构稀疏性的差异性,设计了参数先验与非参数先验来构建基于Polya urn与过松弛层采样的混合采样框架体系.该混合采样方案不但能够在统一的Metropolis-Hasting(M-H)概率评价准则下实现,而且能够最大限度地克服高斯随机走步的缺陷,方便、快速地获得马尔科夫样本链的展开.仿真结果表明,混合采样算法比高斯过程回归模型及高斯过程函数回归混合模型具有更广泛的适应性及更好的预测效果. 展开更多
关键词 混合采样 非参数贝叶斯推理 Dirichlet过程混合 高斯过程
下载PDF
线性动态系统基于块采样的卡尔曼平滑推理算法
14
作者 雷菊阳 黄克 +1 位作者 许海翔 史习智 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第8期1396-1400,共5页
针对线性动态系统在复杂噪声环境中的不确定性的传递问题,提出了用块采样推理方法逼近状态和噪声的后验分布.该方法在时序采样中,样本在基于条件独立性准则下可一次性更新,这通常比单独更新来得简单和有效.通过引入Dirichlet过程混合模... 针对线性动态系统在复杂噪声环境中的不确定性的传递问题,提出了用块采样推理方法逼近状态和噪声的后验分布.该方法在时序采样中,样本在基于条件独立性准则下可一次性更新,这通常比单独更新来得简单和有效.通过引入Dirichlet过程混合模型(Dirichlet Process Mixture,DPM),能够较方便地获得马尔科夫链式样本.结合卡尔曼平滑技术,使块采样算法能够在分布空间逼近基础上取得较高的精度.仿真结果显示,块采样平滑算法具有较好的效果. 展开更多
关键词 非参数贝叶斯推理 Dirichlet过程混合 吉布斯采样 块采样
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部