Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial ...Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations.Kriging is a simple and popular geostatistical interpolation method,but it has two known problems:uncertainty underestimation and violation of assumptions.This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions.To this end,several methods are tested:transformation,detrending,multiple spatial correlation functions,and Bayesian kriging.In particular,we focus on a short-term and time-specific rather than a long-term and event-specific analysis.This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012.Data from a total of 100 automatic weather stations are used,and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute.The one-hour average rainfall intensity is then calculated to minimize the measurement random error.Cross-validation is carried out for evaluating the interpolation methods at regional and local levels.As a result,transformation is found to play an important role in improving spatial interpolation and uncertainty assessment,and Bayesian methods generally outperform traditional ones in terms of the criteria.展开更多
This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to fin...This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.展开更多
基金funded by the Korea Meteorological Administration Research and Development Program (Grant No. CATER 2013-2040)supported by the Brain Pool program of the Korean Federation of Science and Technology Societies (KOFST) (Grant No. 122S-1-3-0422)
文摘Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.Ground-based telemetered rain gauges are widely used to collect precipitation measurements.Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations.Kriging is a simple and popular geostatistical interpolation method,but it has two known problems:uncertainty underestimation and violation of assumptions.This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions.To this end,several methods are tested:transformation,detrending,multiple spatial correlation functions,and Bayesian kriging.In particular,we focus on a short-term and time-specific rather than a long-term and event-specific analysis.This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012.Data from a total of 100 automatic weather stations are used,and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute.The one-hour average rainfall intensity is then calculated to minimize the measurement random error.Cross-validation is carried out for evaluating the interpolation methods at regional and local levels.As a result,transformation is found to play an important role in improving spatial interpolation and uncertainty assessment,and Bayesian methods generally outperform traditional ones in terms of the criteria.
文摘This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.