This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected featu...This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence between two attributes (binary) is determined based on the probabilities of their joint values that contribute to positive and negative classification decisions. If opposing sets of attribute values do not lead to opposing classification decisions (zero probability), then the two attributes are considered independent of each other, otherwise dependent, and one of them can be removed and thus the number of attributes is reduced. The process must be repeated on all combinations of attributes. The paper also evaluates the approach by comparing it with existing feature selection algorithms over 8 datasets from University of California, Irvine (UCI) machine learning databases. The proposed method shows better results in terms of number of selected features, classification accuracy, and running time than most existing algorithms.展开更多
The set of probability functions is a convex subset of L1 and it does not have a linear space structure when using ordinary sum and multiplication by real constants. Moreover, difficulties arise when dealing with dist...The set of probability functions is a convex subset of L1 and it does not have a linear space structure when using ordinary sum and multiplication by real constants. Moreover, difficulties arise when dealing with distances between densities. The crucial point is that usual distances are not invariant under relevant transformations of densities. To overcome these limitations, Aitchison's ideas on compositional data analysis are used, generalizing perturbation and power transformation, as well as the Aitchison inner product, to operations on probability density functions with support on a finite interval. With these operations at hand, it is shown that the set of bounded probability density functions on finite intervals is a pre-Hilbert space. A Hilbert space of densities, whose logarithm is square-integrable, is obtained as the natural completion of the pre-Hilbert space.展开更多
文摘This paper proposes one method of feature selection by using Bayes' theorem. The purpose of the proposed method is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence between two attributes (binary) is determined based on the probabilities of their joint values that contribute to positive and negative classification decisions. If opposing sets of attribute values do not lead to opposing classification decisions (zero probability), then the two attributes are considered independent of each other, otherwise dependent, and one of them can be removed and thus the number of attributes is reduced. The process must be repeated on all combinations of attributes. The paper also evaluates the approach by comparing it with existing feature selection algorithms over 8 datasets from University of California, Irvine (UCI) machine learning databases. The proposed method shows better results in terms of number of selected features, classification accuracy, and running time than most existing algorithms.
基金the Dirección General de Investigación of the Spanish Ministry for ScienceTechnology through the project BFM2003-05640/MATE and from the Departament d'Universitats,Recerca i Societat de la Informac
文摘The set of probability functions is a convex subset of L1 and it does not have a linear space structure when using ordinary sum and multiplication by real constants. Moreover, difficulties arise when dealing with distances between densities. The crucial point is that usual distances are not invariant under relevant transformations of densities. To overcome these limitations, Aitchison's ideas on compositional data analysis are used, generalizing perturbation and power transformation, as well as the Aitchison inner product, to operations on probability density functions with support on a finite interval. With these operations at hand, it is shown that the set of bounded probability density functions on finite intervals is a pre-Hilbert space. A Hilbert space of densities, whose logarithm is square-integrable, is obtained as the natural completion of the pre-Hilbert space.