利用形态学商图像对人眼区域和皮肤区域有明显不同响应值的特点,根据贝叶斯后验概率的优点,提出一种新的人眼定位的方法。算法分成人眼模板训练过程和人眼定位过程。训练过程首先计算人眼图像的形态学商图像,然后利用K-MEANS算法自动为...利用形态学商图像对人眼区域和皮肤区域有明显不同响应值的特点,根据贝叶斯后验概率的优点,提出一种新的人眼定位的方法。算法分成人眼模板训练过程和人眼定位过程。训练过程首先计算人眼图像的形态学商图像,然后利用K-MEANS算法自动为不同角度或者戴眼镜的人眼建立模板。人眼定位过程首先计算人脸图像的形态学商图像,然后使用与模板相同大小的滑动窗口和离散余弦相似度判定每个窗口与模板匹配的程度获得后验概率图,最后根据后验概率图中各个连通区域的平均概率判定眼睛位置。在Caltech数据库、Labeled Faces in the Wild(LFW)数据库及Yale Face B数据库中的实验结果证明,该算法对不同角度,不同光照,低分辨率,甚至戴眼镜的人眼图片均有较高的定位率。展开更多
文摘利用形态学商图像对人眼区域和皮肤区域有明显不同响应值的特点,根据贝叶斯后验概率的优点,提出一种新的人眼定位的方法。算法分成人眼模板训练过程和人眼定位过程。训练过程首先计算人眼图像的形态学商图像,然后利用K-MEANS算法自动为不同角度或者戴眼镜的人眼建立模板。人眼定位过程首先计算人脸图像的形态学商图像,然后使用与模板相同大小的滑动窗口和离散余弦相似度判定每个窗口与模板匹配的程度获得后验概率图,最后根据后验概率图中各个连通区域的平均概率判定眼睛位置。在Caltech数据库、Labeled Faces in the Wild(LFW)数据库及Yale Face B数据库中的实验结果证明,该算法对不同角度,不同光照,低分辨率,甚至戴眼镜的人眼图片均有较高的定位率。