For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergenc...For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.展开更多
Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n...Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established.展开更多
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d...Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.展开更多
In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type The...In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained.展开更多
该文主要讨论的是滑线性过程X_k=sum from i=-∞to∞a_(i+k)ε_i,其中{ε_i;-∞<i<∞}是均值为零,方差有限的双测无穷同分布■-混合或负相伴随机变量序列,{a_i;~∞<i<∞}为绝对可和的实数序列.令S_n=sum from k=1 to n X_k,n≥1...该文主要讨论的是滑线性过程X_k=sum from i=-∞to∞a_(i+k)ε_i,其中{ε_i;-∞<i<∞}是均值为零,方差有限的双测无穷同分布■-混合或负相伴随机变量序列,{a_i;~∞<i<∞}为绝对可和的实数序列.令S_n=sum from k=1 to n X_k,n≥1,作者证明了,对于1≤p<2以及r>p,若E|ε_1|~r<∞■ε^(2(r-p)/(2-p))sum from n=1 to∞n^(r/p-2)P{|S_n|≥εn^(1/p)}=p/(r-p)E|Z|^(2(r-p)/(2-p)),其中Z是服从均值为零,方差为τ~2=σ~2·(sum from i=-∞to∞.a_i)~2的正态分布.展开更多
Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i...Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.展开更多
设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么...设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<P<2及r>P。展开更多
For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of ...For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.展开更多
设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r...设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r/p-2))P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to(1/n)P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to((1n n)~δ/n)P〔│S_n│≥ε(n 1n n)~(1/2)〕的精确渐近性.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10871146)supported by Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.
文摘Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established.
基金Research supported by Natural Science Foundation of China(No.10071072)
文摘Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201001,11171001,11126176 and 11226207)Natural Science Foundation of Anhui Province(Grant Nos.1208085QA03 and 1308085QA03)+2 种基金Applied Teaching Model Curriculum of Anhui University(Grant No.XJYYXKC04)Students Innovative Training Project of Anhui University(Grant No.201310357004)Doctoral Research Start-up Funds Projects of Anhui University and the Students Science Research Training Program of Anhui University(Grant No.KYXL2012007)
文摘In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained.
文摘该文主要讨论的是滑线性过程X_k=sum from i=-∞to∞a_(i+k)ε_i,其中{ε_i;-∞<i<∞}是均值为零,方差有限的双测无穷同分布■-混合或负相伴随机变量序列,{a_i;~∞<i<∞}为绝对可和的实数序列.令S_n=sum from k=1 to n X_k,n≥1,作者证明了,对于1≤p<2以及r>p,若E|ε_1|~r<∞■ε^(2(r-p)/(2-p))sum from n=1 to∞n^(r/p-2)P{|S_n|≥εn^(1/p)}=p/(r-p)E|Z|^(2(r-p)/(2-p)),其中Z是服从均值为零,方差为τ~2=σ~2·(sum from i=-∞to∞.a_i)~2的正态分布.
基金a grant from the Natural Sciences and Engineering Research Council of Canada
文摘Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.
文摘设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<P<2及r>P。
基金the Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.
文摘设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r/p-2))P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to(1/n)P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to((1n n)~δ/n)P〔│S_n│≥ε(n 1n n)~(1/2)〕的精确渐近性.