期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Complete Moment and Integral Convergence for Sums of Negatively Associated Random Variables 被引量:20
1
作者 Han Ying LIANG De Li LI Andrew ROSALSKY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第3期419-432,共14页
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergenc... For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence. 展开更多
关键词 baum-katz's law Lai's law complete moment convergence complete integral convergence convergence rate of tail probabilities sums of identica/ly distributed and negatively associated random variables
原文传递
PRECISE ASYMPTOTICS IN THE BAUM-KATZ AND DAVIS LAW OF LARGE NUMBERS FOR POSITIVELY ASSOCIATED SEQUENCES 被引量:10
2
作者 MiChenjing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期197-204,共8页
Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n... Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established. 展开更多
关键词 complete convergence associated random variables baum-katz law precise asymptotics.
下载PDF
Precise Asymptotics in the Baum-Katz and Davis Laws of Large Numbers of ρ-mixing Sequences 被引量:10
3
作者 Wei HUANG Ye JIANG Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1057-1070,共14页
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d... Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2. 展开更多
关键词 ρ-mixing random variable Tail probabilities baum-katz law Davis law
原文传递
Complete Convergence and Complete Moment Convergence for Martingale Diference Sequence 被引量:8
4
作者 Xue Jun WANG Shu He HU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第1期119-132,共14页
In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type The... In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained. 展开更多
关键词 Martingale diference sequence complete convergence complete moment convergence baumkatz-type theorem
原文传递
线性过程关于大数律的精确渐近性 被引量:2
5
作者 李云霞 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期675-687,共13页
该文主要讨论的是滑线性过程X_k=sum from i=-∞to∞a_(i+k)ε_i,其中{ε_i;-∞<i<∞}是均值为零,方差有限的双测无穷同分布■-混合或负相伴随机变量序列,{a_i;~∞<i<∞}为绝对可和的实数序列.令S_n=sum from k=1 to n X_k,n≥1... 该文主要讨论的是滑线性过程X_k=sum from i=-∞to∞a_(i+k)ε_i,其中{ε_i;-∞<i<∞}是均值为零,方差有限的双测无穷同分布■-混合或负相伴随机变量序列,{a_i;~∞<i<∞}为绝对可和的实数序列.令S_n=sum from k=1 to n X_k,n≥1,作者证明了,对于1≤p<2以及r>p,若E|ε_1|~r<∞■ε^(2(r-p)/(2-p))sum from n=1 to∞n^(r/p-2)P{|S_n|≥εn^(1/p)}=p/(r-p)E|Z|^(2(r-p)/(2-p)),其中Z是服从均值为零,方差为τ~2=σ~2·(sum from i=-∞to∞.a_i)~2的正态分布. 展开更多
关键词 线性过程 Φ-混合 负相伴 baum-katz 完全收敛性
下载PDF
A Supplement to the Baum-Katz-Spitzer Complete Convergence Theorem
6
作者 Andrew ROSALSKY 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第3期557-562,共6页
Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i... Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut. 展开更多
关键词 partial sums of i.i.d. Banach space valued random variables baum-katz-Spitzer complete convergence theorem almost sure convergence
原文传递
局部时的Cauchy主值的精确完全收敛性
7
作者 黄炜 张立新 闻继威 《数学年刊(A辑)》 CSCD 北大核心 2004年第5期587-600,共14页
设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么... 设{X,Xn;n≥1)为i.i.d.的随机变量序列,其均值为0且EX2=1.令S={Sn}n≥0为一维随机游动,其中S0=0,Sn=sum from k=1 to n Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<P<2及r>P。 展开更多
关键词 主值 局部时 随机游动 baumkatz Davis律
下载PDF
On the Relationship Between the Baum-Katz-Spitzer Complete Convergence Theorem and the Law of the Iterated Logarithm
8
作者 De Li LI Andrew ROSALSKY Andrei VOLODIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第4期599-612,共14页
For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of ... For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables. 展开更多
关键词 partial sums of i.i.d. Banach space-valued random variables baum-katz-Spitzer complete convergence theorem law of the iterated logarithm almost sure convergence
原文传递
一般矩条件下随机变量的收敛性
9
作者 邱德华 陈平炎 段振华 《数学学报(中文版)》 CSCD 北大核心 2018年第2期261-272,共12页
本文在一般矩条件下研究了同分布的NA随机变量序列和独立同分布的随机变量序列的收敛性,得到了推广形式的Baum-Katz定理和强大数律,这些结果推广了已知的一些文献中相应的结果.
关键词 baum-katz定理 完全收敛 一般矩条件 NA随机变量
原文传递
滑动平均过程的Spitzer和Baum-Katz律的精确渐近
10
作者 陈平炎 张华 《应用数学学报》 CSCD 北大核心 2007年第6期1011-1017,共7页
本文讨论了滑动和过程的Spitzer和Baum-Katz律的精确渐近,其中{ξ,ξi-∞<i<∞}是双向无穷的独立同分布的随机变量序列,其共同分布属于某个半稳定律的(正则)吸引场,{ci,-∞<i<∞}满足某种可和条件的实数序列.为此,建立了Xk... 本文讨论了滑动和过程的Spitzer和Baum-Katz律的精确渐近,其中{ξ,ξi-∞<i<∞}是双向无穷的独立同分布的随机变量序列,其共同分布属于某个半稳定律的(正则)吸引场,{ci,-∞<i<∞}满足某种可和条件的实数序列.为此,建立了Xk的一个基本定理,其本身也是有意义的. 展开更多
关键词 滑动平均过程 半稳定分布 Spitzer律 baum-katz
原文传递
LPQD序列Baum-Katz和Davis大数定律的精确渐近性
11
作者 曾艳 王文胜 《高师理科学刊》 2009年第2期28-31,38,共5页
设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r... 设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r/p-2))P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to(1/n)P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to((1n n)~δ/n)P〔│S_n│≥ε(n 1n n)~(1/2)〕的精确渐近性. 展开更多
关键词 LPQD序列 baumkatz和Davis大数定律 精确渐近性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部