针对微网中源储荷的协同配置问题,为确保微网系统的经济性,在规划阶段需细致考虑源储荷的配比问题。提出了基于雨流计数法的电池健康状态评估方法,考虑储能电池健康状态(state of health,So H),以源储荷净收益最大为目标,提出了电池储...针对微网中源储荷的协同配置问题,为确保微网系统的经济性,在规划阶段需细致考虑源储荷的配比问题。提出了基于雨流计数法的电池健康状态评估方法,考虑储能电池健康状态(state of health,So H),以源储荷净收益最大为目标,提出了电池储能系统各时段充放电功率的优化方法,综合考虑了运行效益、补贴及上网收益、延缓配电网升级带来的效益、碳减排效益、投资运维及电池替换成本,以投资回报率为指标,建立了源储荷的协同配置模型,并提出了一种双层多目标优化求解方法,通过实际算例仿真分析,结果表明:所提出的源储荷协同配置方法能够实现微网系统的经济性,该文算例中,光储荷的适宜配比为0.7:0.125:1,储能系统持续放电时间为3 h,源储荷的协同配置受电价、负荷、收益构成、光储成本、储能技术特性等多因素制约。仿真结果证明了模型及其求解方法的有效性,可为微网中源储荷的协同配置提供参考。展开更多
As electric vehicle(EV)sales grew approximately 50%year-over-year,surpassing 3.2 million units in 2020,the“roaring era”of EV is around the corner.To meet the increasing demand for low cost and high energy density ba...As electric vehicle(EV)sales grew approximately 50%year-over-year,surpassing 3.2 million units in 2020,the“roaring era”of EV is around the corner.To meet the increasing demand for low cost and high energy density batteries,anode-free configuration,with no heavy and voluminous host material on the current collector,has been proposed and further investigated.Nevertheless,it always suffers from several non-negligible“bottlenecks”,such as fragile solid electrolyte interface,deteriorated cycling reversibility,and uncontrolled dendrite formation.Inspired by the“compensatory effect”of some disabled people with other specific functions strengthened to make up for their inconvenience,corresponding quasi-compensatory measures after anode removal,involving dimensional compensation,SEI robustness compensation,lithio-philicity compensation,and lithium source compensation,have been carried out and achieved significant battery performance enhancement.In this review,the chemistry,challenges,and rationally designed“quasi-compensatory effect”associated with anode-free lithium-ion battery are systematically discussed with several possible R&D directions that may aid,direct,or facilitate future research on lithium storage in anode-free configuration essentially emphasized.展开更多
Integration of electric vehicles(EVs),demand response and renewable energy will bring multiple opportunities for low carbon power system.A promising integration will be EV battery swapping station(BSS)bundled with PV(...Integration of electric vehicles(EVs),demand response and renewable energy will bring multiple opportunities for low carbon power system.A promising integration will be EV battery swapping station(BSS)bundled with PV(photovoltaic)power.Optimizing the configuration and operation of BSS is the key problem to maximize benefit of this integration.The main objective of this paper is to solve infrastructure configuration of BSS.The principle challenge of such an objective is to enhance the swapping ability and save corresponding investment and operation cost under uncertainties of PV generation and swapping demand.Consequently this paper mainly concentrates on combining operation optimization with optimal investment strategies for BSS considering multiscenarios PV power generation and swapping demand.A stochastic programming model is developed by using state flow method to express different states of batteries and its objective is to maximize the station’s net profit.The model is formulated as a mixed-integer linear program to guarantee the efficiency and stability of the optimization.Case studies validate the effectiveness of the proposed approach and demonstrate that ignoring the uncertainties of PV generation and swapping demand may lead to an inappropriate batteries,chargers and swapping robots configuration for BSS.展开更多
文摘针对微网中源储荷的协同配置问题,为确保微网系统的经济性,在规划阶段需细致考虑源储荷的配比问题。提出了基于雨流计数法的电池健康状态评估方法,考虑储能电池健康状态(state of health,So H),以源储荷净收益最大为目标,提出了电池储能系统各时段充放电功率的优化方法,综合考虑了运行效益、补贴及上网收益、延缓配电网升级带来的效益、碳减排效益、投资运维及电池替换成本,以投资回报率为指标,建立了源储荷的协同配置模型,并提出了一种双层多目标优化求解方法,通过实际算例仿真分析,结果表明:所提出的源储荷协同配置方法能够实现微网系统的经济性,该文算例中,光储荷的适宜配比为0.7:0.125:1,储能系统持续放电时间为3 h,源储荷的协同配置受电价、负荷、收益构成、光储成本、储能技术特性等多因素制约。仿真结果证明了模型及其求解方法的有效性,可为微网中源储荷的协同配置提供参考。
基金This work was supported by the Global Frontier R&D Programme(2013M3A6B1078875)of the Center for Hybrid Interface Materials(HIM)funded by the Ministry of Science,ICT&Future Planningby the Human Resources Development program(No.20184010201720)of a Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry,and Energy of the Korean government.
文摘As electric vehicle(EV)sales grew approximately 50%year-over-year,surpassing 3.2 million units in 2020,the“roaring era”of EV is around the corner.To meet the increasing demand for low cost and high energy density batteries,anode-free configuration,with no heavy and voluminous host material on the current collector,has been proposed and further investigated.Nevertheless,it always suffers from several non-negligible“bottlenecks”,such as fragile solid electrolyte interface,deteriorated cycling reversibility,and uncontrolled dendrite formation.Inspired by the“compensatory effect”of some disabled people with other specific functions strengthened to make up for their inconvenience,corresponding quasi-compensatory measures after anode removal,involving dimensional compensation,SEI robustness compensation,lithio-philicity compensation,and lithium source compensation,have been carried out and achieved significant battery performance enhancement.In this review,the chemistry,challenges,and rationally designed“quasi-compensatory effect”associated with anode-free lithium-ion battery are systematically discussed with several possible R&D directions that may aid,direct,or facilitate future research on lithium storage in anode-free configuration essentially emphasized.
基金the National Natural Science Foundation of China(Grant No.51207050).
文摘Integration of electric vehicles(EVs),demand response and renewable energy will bring multiple opportunities for low carbon power system.A promising integration will be EV battery swapping station(BSS)bundled with PV(photovoltaic)power.Optimizing the configuration and operation of BSS is the key problem to maximize benefit of this integration.The main objective of this paper is to solve infrastructure configuration of BSS.The principle challenge of such an objective is to enhance the swapping ability and save corresponding investment and operation cost under uncertainties of PV generation and swapping demand.Consequently this paper mainly concentrates on combining operation optimization with optimal investment strategies for BSS considering multiscenarios PV power generation and swapping demand.A stochastic programming model is developed by using state flow method to express different states of batteries and its objective is to maximize the station’s net profit.The model is formulated as a mixed-integer linear program to guarantee the efficiency and stability of the optimization.Case studies validate the effectiveness of the proposed approach and demonstrate that ignoring the uncertainties of PV generation and swapping demand may lead to an inappropriate batteries,chargers and swapping robots configuration for BSS.