Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been exp...Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been expected to the first commercial anode material for SIBs.Among various of hard carbon materials,plant-derived carbon is prominent because of abundant source,low cost and excellent electrochemical performance.This review focuses on the recent progress in the development of plantderived hard carbon anodes for SIBs.We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures.It aims to present a full scope of plant-derived hard carbon anode materials and provide indepth understanding and guideline for the design of highperformance hard carbon for sodium ion anodes.展开更多
Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,...Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,owing to high power densities,good charge/discharge stability,and long cycle life.The driving ranges and acceleration performances are gaining increasing concerns from customers,which depend highly on the power level of LIBs.With the increase in power outputs,rising heat generation significantly affects the battery performances,and in particular operation safety.Meanwhile,the cold-start performance is still an intractable problem under extreme conditions.These challenges put forward higher requirements for a dedicated battery thermal management system(BTMS).Compared to traditional BTMSs in EVs,the heat pipe-based BTMS has great application prospects owing to its compact structure,flexibility,low cost,and especially high thermal conductivity.Encompassing this topic,this review first introduces heat generation phenomena and temperature characteristics of LIBs.Multiple abuse conditions and thermal runaway issues are described afterward.Typical cooling and preheating methods for designing a BTMS are also discussed.More emphasis on this review is put on the use of various heat pipes for BTMSs to enhance the thermal performances of LIBs.For lack of wide application in actual EVs,more efforts should be made to extend the use of heat pipes for constructing an energy-efficient,cost-effective,and reliable BTMS to improve the performances and safety of EVs.展开更多
Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigat...Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.展开更多
基金financially supported by the Key Research and Development Project of Hunan Education Department(No.18A114)the Joint Natural Science Project of Hunan-Changde(No.2018JJ4001)+1 种基金the Youth Fund of Hunan Agricultural University(No.18QN01)the Funding for the Major Scientific Research and Innovation Team Cultivation at Hunan Agricultural University(No.2018)。
文摘Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been expected to the first commercial anode material for SIBs.Among various of hard carbon materials,plant-derived carbon is prominent because of abundant source,low cost and excellent electrochemical performance.This review focuses on the recent progress in the development of plantderived hard carbon anodes for SIBs.We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures.It aims to present a full scope of plant-derived hard carbon anode materials and provide indepth understanding and guideline for the design of highperformance hard carbon for sodium ion anodes.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant Nos.2019B090909001 and 2020B090920002)the National Natural Science Foundation of China(Grant Nos.51975218 and 51722504)+1 种基金Guangdong Science and Technology Plan Program(Grant No.2017KZ010105)Fundamental Research Funds for the Central Universities(Grant No.2018ZD31)。
文摘Electric vehicles(EVs)are globally undergoing rapid developments,and have great potentials to replace the traditional vehicles based on fossil fuels.Power-type lithium-ion batteries(LIBs)have been widely used for EVs,owing to high power densities,good charge/discharge stability,and long cycle life.The driving ranges and acceleration performances are gaining increasing concerns from customers,which depend highly on the power level of LIBs.With the increase in power outputs,rising heat generation significantly affects the battery performances,and in particular operation safety.Meanwhile,the cold-start performance is still an intractable problem under extreme conditions.These challenges put forward higher requirements for a dedicated battery thermal management system(BTMS).Compared to traditional BTMSs in EVs,the heat pipe-based BTMS has great application prospects owing to its compact structure,flexibility,low cost,and especially high thermal conductivity.Encompassing this topic,this review first introduces heat generation phenomena and temperature characteristics of LIBs.Multiple abuse conditions and thermal runaway issues are described afterward.Typical cooling and preheating methods for designing a BTMS are also discussed.More emphasis on this review is put on the use of various heat pipes for BTMSs to enhance the thermal performances of LIBs.For lack of wide application in actual EVs,more efforts should be made to extend the use of heat pipes for constructing an energy-efficient,cost-effective,and reliable BTMS to improve the performances and safety of EVs.
基金financial supports from the National Natural Science Foundation of China (51974368)the Fundamental Research Funds of the Central South University,China。
文摘Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase.