电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关...电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。展开更多
在电池管理系统中,二阶Thevenin等效电路模型是一种广泛应用的锂离子电池模型,合理的RC环节可以准确地描述电池的动态特性。电池模型的具体参数一般通过递推最小二乘法(recursive least square,RLS)在特定工况下辨识得到。直接采用RLS...在电池管理系统中,二阶Thevenin等效电路模型是一种广泛应用的锂离子电池模型,合理的RC环节可以准确地描述电池的动态特性。电池模型的具体参数一般通过递推最小二乘法(recursive least square,RLS)在特定工况下辨识得到。直接采用RLS算法进行参数辨识通常无法得到2个有效的RC环节参数,使得电池模型精度与适用性存在一定局限性。针对该问题,文中设计一种新型复合参数辨识工况,并基于此工况提出一种融合约束因子的递推最小二乘法用于电池建模。该方案同时参考2种具有代表性的工况数据,可同时获得SOC-OCV曲线及各荷电状态(stateofcharge,SOC)下电池模型的参数。经验证,该方案构造的电池模型在全SOC周期内,对不同电流的工况适应性较强,SOC估算精度较高。展开更多
利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscen...利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。展开更多
锂离子电池是电力系统中不可或缺的重要储能元件,脉冲大倍率工况下运行的锂离子电池具有单次放电时间短、放电循环多、状态变化频繁、非线性极化现象明显等特点。该文以脉冲大倍率工况下锂离子电池模型为研究对象,针对电化学模型和等效...锂离子电池是电力系统中不可或缺的重要储能元件,脉冲大倍率工况下运行的锂离子电池具有单次放电时间短、放电循环多、状态变化频繁、非线性极化现象明显等特点。该文以脉冲大倍率工况下锂离子电池模型为研究对象,针对电化学模型和等效电路模型对模型依赖度高、模型参数难以获取以及脉冲大倍率工况下非线性极化现象导致拟合精度不足等问题,提出基于长短期记忆循环神经网络(long short term memory recurrent neural network,LSTM-RNN)以实现准确的锂离子电池建模。该方法利用LSTM-RNN的动态逼近和长时记忆能力,以获取脉冲大倍率工况下锂离子电池性能参数和电池端电压、荷电状态、电流、温度之间的非线性关系。在6种脉冲大倍率放电工况下对磷酸铁锂电池进行建模,实验结果表明,所提出的基于长短期记忆循环神经网络的锂离子电池模型均能够准确表征磷酸铁锂电池工作特性。展开更多
为了精确估算锂离子动力电池的电池荷电状态(State Of Charge,SOC),在分析影响SOC估算精度的主要因素以及传统SOC估算方法的优缺点的基础上,提出一种改进的安时积分法,对影响SOC估算的主要因素进行参数修正。该算法采用基于简单电化学...为了精确估算锂离子动力电池的电池荷电状态(State Of Charge,SOC),在分析影响SOC估算精度的主要因素以及传统SOC估算方法的优缺点的基础上,提出一种改进的安时积分法,对影响SOC估算的主要因素进行参数修正。该算法采用基于简单电化学模型的组合电池模型,结合扩展的卡尔曼滤波(Extended Karlman Filter,EKF)算法对SOC进行估算。对比结果表明,在SOC的估算过程中能够保持很好的精度。展开更多
文摘电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。
文摘在电池管理系统中,二阶Thevenin等效电路模型是一种广泛应用的锂离子电池模型,合理的RC环节可以准确地描述电池的动态特性。电池模型的具体参数一般通过递推最小二乘法(recursive least square,RLS)在特定工况下辨识得到。直接采用RLS算法进行参数辨识通常无法得到2个有效的RC环节参数,使得电池模型精度与适用性存在一定局限性。针对该问题,文中设计一种新型复合参数辨识工况,并基于此工况提出一种融合约束因子的递推最小二乘法用于电池建模。该方案同时参考2种具有代表性的工况数据,可同时获得SOC-OCV曲线及各荷电状态(stateofcharge,SOC)下电池模型的参数。经验证,该方案构造的电池模型在全SOC周期内,对不同电流的工况适应性较强,SOC估算精度较高。
文摘利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。
文摘锂离子电池是电力系统中不可或缺的重要储能元件,脉冲大倍率工况下运行的锂离子电池具有单次放电时间短、放电循环多、状态变化频繁、非线性极化现象明显等特点。该文以脉冲大倍率工况下锂离子电池模型为研究对象,针对电化学模型和等效电路模型对模型依赖度高、模型参数难以获取以及脉冲大倍率工况下非线性极化现象导致拟合精度不足等问题,提出基于长短期记忆循环神经网络(long short term memory recurrent neural network,LSTM-RNN)以实现准确的锂离子电池建模。该方法利用LSTM-RNN的动态逼近和长时记忆能力,以获取脉冲大倍率工况下锂离子电池性能参数和电池端电压、荷电状态、电流、温度之间的非线性关系。在6种脉冲大倍率放电工况下对磷酸铁锂电池进行建模,实验结果表明,所提出的基于长短期记忆循环神经网络的锂离子电池模型均能够准确表征磷酸铁锂电池工作特性。
文摘为了精确估算锂离子动力电池的电池荷电状态(State Of Charge,SOC),在分析影响SOC估算精度的主要因素以及传统SOC估算方法的优缺点的基础上,提出一种改进的安时积分法,对影响SOC估算的主要因素进行参数修正。该算法采用基于简单电化学模型的组合电池模型,结合扩展的卡尔曼滤波(Extended Karlman Filter,EKF)算法对SOC进行估算。对比结果表明,在SOC的估算过程中能够保持很好的精度。