This paper analyzes a discrete-time Geoa/Geob/1 queuing system with batch arrivals of fixed size a, and batch services of fixed size b. Both arrivals and services occur randomly following a geometric distribution. The...This paper analyzes a discrete-time Geoa/Geob/1 queuing system with batch arrivals of fixed size a, and batch services of fixed size b. Both arrivals and services occur randomly following a geometric distribution. The steady-state queue length distribution is obtained as the solution of a system of difference equations. Necessary and sufficient conditions are given for the system to be stationary. Besides, the uniqueness of the root of the characteristic polynomial in the interval (0, 1) is proven which is the only root needed for the computation of the theoretical solution with the proposed procedure. The theoretical results are compared with the ones observed in some simulations of the queuing system under different sets of parameters. The agreement of the results encourages the use of simulation for more complex systems. Finally, we explore the effect of parameters on the mean length of the queue as well as on the mean waiting time.展开更多
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.展开更多
Bioreactor operation requires continuous monitoring of fermentation parameters and real-time control over bioreactor devices. Remote monitoring and control of the bioreactor's computer via the Internet avoids the nec...Bioreactor operation requires continuous monitoring of fermentation parameters and real-time control over bioreactor devices. Remote monitoring and control of the bioreactor's computer via the Internet avoids the necessity of personnel being continually onsite during operation. A two liter Sartorius-stedim Biostat~ A Plus fermentation system was networked and interfaced with the commercial software from GoToMyPC to allow remote control of the fermentation system utilizing the internet. The fermentation vessel was equipped with hardware calibrated for monitoring and controlling culture parameters during experimentations. The uniform resource locator controlled night-vision web camera allowed continuous monitoring of the glass fermentation vessel during the day and at night. The main window screen of the laboratory computer can be securely accessed from any portable device (i.e. laptop) capable of establishing an Internet connection and executing the commercial software from GoToMyPC. The secured internet protocol address, provided by GoToMyPC, assures that the system can only be controlled by authorized users who have been given access to the account. This interface permits the remote control of the Biostat A Plus fermentation system and possibly other automated or potentially automated culturing systems at the convenience of the user(s).展开更多
文摘This paper analyzes a discrete-time Geoa/Geob/1 queuing system with batch arrivals of fixed size a, and batch services of fixed size b. Both arrivals and services occur randomly following a geometric distribution. The steady-state queue length distribution is obtained as the solution of a system of difference equations. Necessary and sufficient conditions are given for the system to be stationary. Besides, the uniqueness of the root of the characteristic polynomial in the interval (0, 1) is proven which is the only root needed for the computation of the theoretical solution with the proposed procedure. The theoretical results are compared with the ones observed in some simulations of the queuing system under different sets of parameters. The agreement of the results encourages the use of simulation for more complex systems. Finally, we explore the effect of parameters on the mean length of the queue as well as on the mean waiting time.
基金Supported in part by the State Key Development Program for Basic Research of China(2012CB720505)the National Natural Science Foundation of China(61174105,60874049)
文摘Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.
文摘Bioreactor operation requires continuous monitoring of fermentation parameters and real-time control over bioreactor devices. Remote monitoring and control of the bioreactor's computer via the Internet avoids the necessity of personnel being continually onsite during operation. A two liter Sartorius-stedim Biostat~ A Plus fermentation system was networked and interfaced with the commercial software from GoToMyPC to allow remote control of the fermentation system utilizing the internet. The fermentation vessel was equipped with hardware calibrated for monitoring and controlling culture parameters during experimentations. The uniform resource locator controlled night-vision web camera allowed continuous monitoring of the glass fermentation vessel during the day and at night. The main window screen of the laboratory computer can be securely accessed from any portable device (i.e. laptop) capable of establishing an Internet connection and executing the commercial software from GoToMyPC. The secured internet protocol address, provided by GoToMyPC, assures that the system can only be controlled by authorized users who have been given access to the account. This interface permits the remote control of the Biostat A Plus fermentation system and possibly other automated or potentially automated culturing systems at the convenience of the user(s).