An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
The fuzzy control algorithms used commonly at present are all regarded as some interpolation functions, which is in essence equivalent to discrete response functions to be fitted. This means that fuzzy control method ...The fuzzy control algorithms used commonly at present are all regarded as some interpolation functions, which is in essence equivalent to discrete response functions to be fitted. This means that fuzzy control method is similar to finite element method in mathematical physics, which is a kind of direct manner or numerical method in control systems.展开更多
A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter fa...A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter family of solutions in exact form, with all the coefficients determined in rational numbers. Comparative studies are pursued to investigate the effects due to changes of base parameters on (i) the accuracy of the theoretically predicted wave properties and (ii) the rate of convergence of perturbation expansion. Two important results are found by comparisons between the theoretical predictions based on a set of parameters separately adopted for expansion in turn. First, the accuracy and the convergence of the perturbation expansions, appraised versus the exact solution provided by an earlier paper [1] as the standard reference, are found to depend, quite sensitively, on changes in base parameter. The resulting variations in the solution are physically displayed in various wave properties with differences found dependent on which property (e.g. the wave amplitude, speed, its profile, excess mass, momentum, and energy), on what range in value of the base, and on the rank of the order n in the expansion being addressed. Secondly, regarding convergence, the present perturbation series is found definitely asymptotic in nature, with the relative error δ (n) (the relative mean-square difference between successive orders n of wave elevations) reaching a minimum, δm at a specific order, n = n both depending on the base adopted, e.g. nm,α= 11-12 based on parameter α (wave amplitude), nm,δ = 15 on δ (amplitude-speed square ratio), and nm.ε= 17 on ε ( wave number squared). The asymptotic range is brought to completion by the highest order of n = 18 reached in this work.展开更多
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘The fuzzy control algorithms used commonly at present are all regarded as some interpolation functions, which is in essence equivalent to discrete response functions to be fitted. This means that fuzzy control method is similar to finite element method in mathematical physics, which is a kind of direct manner or numerical method in control systems.
基金The project partly supported by the National Natural Science Foundation of China(19925414,10474045)
文摘A unified perturbation theory is developed here for calculating solitary waves of all heights by series expansion of base flow variables in powers of a small base parameter to eighteenth order for the one-parameter family of solutions in exact form, with all the coefficients determined in rational numbers. Comparative studies are pursued to investigate the effects due to changes of base parameters on (i) the accuracy of the theoretically predicted wave properties and (ii) the rate of convergence of perturbation expansion. Two important results are found by comparisons between the theoretical predictions based on a set of parameters separately adopted for expansion in turn. First, the accuracy and the convergence of the perturbation expansions, appraised versus the exact solution provided by an earlier paper [1] as the standard reference, are found to depend, quite sensitively, on changes in base parameter. The resulting variations in the solution are physically displayed in various wave properties with differences found dependent on which property (e.g. the wave amplitude, speed, its profile, excess mass, momentum, and energy), on what range in value of the base, and on the rank of the order n in the expansion being addressed. Secondly, regarding convergence, the present perturbation series is found definitely asymptotic in nature, with the relative error δ (n) (the relative mean-square difference between successive orders n of wave elevations) reaching a minimum, δm at a specific order, n = n both depending on the base adopted, e.g. nm,α= 11-12 based on parameter α (wave amplitude), nm,δ = 15 on δ (amplitude-speed square ratio), and nm.ε= 17 on ε ( wave number squared). The asymptotic range is brought to completion by the highest order of n = 18 reached in this work.
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.