To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without b...To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without barriers,with different barrier heights and porosity rates,and with different train arrangements on the bridge were taken into consideration;in addition,the aerodynamic coefficients of the train-bridge system were measured.It is found that the side force and rolling moment coefficients of the vehicle are efficiently reduced by a single-side wind barrier,but for the bridge deck these values are increased.The height and porosity rate of the barrier are two important factors that influence the windbreak effect.Train arrangement on the bridge will considerably influence the aerodynamic properties of the train-bridge system.The side force and rolling moment coefficients of the vehicle at the windward side are larger than at the leeward side.展开更多
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models...To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.展开更多
Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to i...Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine,specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses.The diversity and the composition of the microbiota,thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junctionproteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review,we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.展开更多
The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distributio...The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036203)the National Natural Science Foundation of China(Grant No.51308034)the"111"Project(Grant No.B13002)
文摘To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without barriers,with different barrier heights and porosity rates,and with different train arrangements on the bridge were taken into consideration;in addition,the aerodynamic coefficients of the train-bridge system were measured.It is found that the side force and rolling moment coefficients of the vehicle are efficiently reduced by a single-side wind barrier,but for the bridge deck these values are increased.The height and porosity rate of the barrier are two important factors that influence the windbreak effect.Train arrangement on the bridge will considerably influence the aerodynamic properties of the train-bridge system.The side force and rolling moment coefficients of the vehicle at the windward side are larger than at the leeward side.
基金Project(2017T001-G)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(2017YFB1201204)supported by the National Key Research and Development Program of China+2 种基金Project(U1534206)supported by the National Natural Science Foundation of ChinaProject(2015CX006)supported by the Innovation-driven Plan in Central South University,ChinaProject(2017zzts521)supported by the Fundamental Research Funds for the Central Universities,China
文摘To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.
文摘Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine,specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses.The diversity and the composition of the microbiota,thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junctionproteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review,we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.
基金supported by National Natural Science Foundation of China (81872806, 81961138009)111 Project (B18035, China)+2 种基金the Fundamental of Research Funds for the Central Universities (China)the Open Research Fund of Chengdu University of Traditional Chinese Medicinethe Open Research Fund of Chengdu University of Traditional Chinese Medicine State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China
文摘The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.