The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastles...An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastless track and bridge are treated as a coupled vibration system with interaction.By simulating the dynamic process of the system,this paper discusses the distribution law of dynamic responses of the bridge deck and the bed slab.It shows the necessity of a base plate for the ballastless track on the long-span plate-truss cable-stayed bridge.Comparison of the influence of different train speeds and stiffness of the elastic vibration-damping pad on the dynamic responses of the bridge deck and the bed slab is also made.The reasonable stiffness value of elastic vibration-damping pad is proposed.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load us...The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.展开更多
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam...Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.展开更多
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ...Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.展开更多
Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud ...Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping.Although the higher stress due to the discontinuities of track structures has been discussed in past studies,few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern.In this paper,we performed a dynamic finite element analysis of a track-formation system,incorporating expansion joints as primary longitudinal discontinuities.The configurations of CRTS Ⅲ slab tracks and the contact conditions between concrete layers were considered.Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers,increasing nonlinearly at a larger coefficient of friction.Given a measured coefficient of friction of 0.7,the calculated longitudinal influencing length(9.0 m) matches with field data.The longitudinal influencing length is not affected with the increasing velocity.As stress concentration arises with expansion joints,the worstcase scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases.A stress concentration factor Cvon the roadbed is proposed;it increases with the increasing velocity,changing from 1.33 to 1.52 at velocities between 5 and 400 km/h.The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities.An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints.Although structural discontinuities induce stress raiser,the extent of concentration is mitigated with increasing depth at different velocity levels.展开更多
This paper discusses the main impact factors of the local settlement and differential settlement of high- speed railway lines. The analysis results show that groundwater exploitation is the direct cause of differ- ent...This paper discusses the main impact factors of the local settlement and differential settlement of high- speed railway lines. The analysis results show that groundwater exploitation is the direct cause of differ- ential settlement. Based on the study of ballastless track additional load and of vehicle, track, and bridge dynamic responses under different differential settlements, a control standard of differential settlement during operation is proposed preliminarily.展开更多
Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of...Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehic展开更多
Gap exists in the interface of cement asphalt emulsion mortar and CRTS I track slab universally, which is more severe at four corners than other parts of the track slab. In this work, the temperature and elevation of ...Gap exists in the interface of cement asphalt emulsion mortar and CRTS I track slab universally, which is more severe at four corners than other parts of the track slab. In this work, the temperature and elevation of CRTS I slab track with and without rail were measured continuously to study the influence mechanism of rail on the gap. The results show that the alternating temperature gradient of track slab is the main reason that causes the gap, and laying rail can efficiently decrease the gap size in the slab track without rail. Compared with the slab track without rail, the maximum elevation occurred at the corner, the maximum gapwidth and the maximum gap depth of the slab track with rail laid were decreased by 0.45 mm (25.7%), 0.75 mm (46.6%) and 9.5 mm (59.4%), respectively; meanwhile, the disqualification ratio at corners was reduced to 5.9%, which is 50% less than that of the track without rail. When elevation mismatch occurs in adjacent track slabs, a gasket should be placed at rail-bearing bed below the track slab in order to avoid the lower slab being dragged up by the higher slab and the further occurrence of new gap.展开更多
The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track ...The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.展开更多
The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leadi...The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.展开更多
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w...In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.展开更多
According to the characteristics of complex terrain and bad geological conditions in the southwest mountainous area of China, it is proposed that cast-in situ double-block ballastless track with layers and blocks stru...According to the characteristics of complex terrain and bad geological conditions in the southwest mountainous area of China, it is proposed that cast-in situ double-block ballastless track with layers and blocks structure should be adopted preferentially in the subgrade section of high-speed railway, which is conducive to the construction, prolongation of service life and maintenance of the ballastless track. Based on the finite element model, the dynamic performance, structural strength and stability of double-block ballastless track under high earthquake-intensity action are analyzed. The analysis shows that the relative displacement between the base slab of ballastless track and the subgrade may occur under 9 degree earthquake action. A new CRTS double-block ballastless track structure with a concave-convex structure between the base slab and the subgrade is proposed in the subgrade section, and its additional stress and relative displacement under earthquake are analyzed. The results show that the additional stress and relative displacement of the new ballastless track structure and the subgrade under 9-degree earthquake actions are small, which meet the high stability requirements of high-speed railway.展开更多
Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry stat...Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry status,the effects of grouting funnel,slab pressing method,mortar expansion ratio,seepage ratio and grouting area on China Railway Track System Type(CRTS I)track slab geometry status were discussed in this paper.Design/methodology/approach–Combined with engineering practice,this paper studied the expansion law of filling layer mortar,the liquid level height of the filling funnel,the pressure plate device and the amount of exudation water and systematically analyzed the influence of filling layer mortar construction on the state of track slab.Relevant precautions and countermeasures were put forward.Findings–The results showed that the track slab floating values of four corners were different with the CA mortar grouting and the track slab corner near CA mortar grouting hole had the maximum floating values.The anti-floating effect of“7”shaped slab pressing device was more efficient than fixed-joint angle iron,and the slab floating value could be further decreased by increasing the amount of“7”shaped slab pressing devices.After CA mortar grouting,the track slab floating pattern had a close correlation with the expansion rate and water seepage rate of CA mortar over time and the expansion and water seepage rate of the mortar were faster when the temperature was high.Furthermore,the use of strip CA mortar filling under the rail bearing platform on bothsides could effectively reduce the float under the track slab,and it could also save mortar consumption and reduce costs.Originality/value–This study plays an important role in controlling the floating values,CA mortar dosage and the building cost of projects by grouting CA mortar at two flanks of filling space.The research results have guiding significance for the design and construction of China’s CRTS I,CRTS II and CRTS III track slab.展开更多
The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks...The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.展开更多
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金supported by the National Natural Science Foundation of China(Grant No.NNSF-U1334201)the National Basic Research Program of China("973"Project)(Grant No.2013CB036206)the Sichuan Province Youth Science and Technology Innovation Team(Grant No.2015TD0004)
文摘An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastless track and bridge are treated as a coupled vibration system with interaction.By simulating the dynamic process of the system,this paper discusses the distribution law of dynamic responses of the bridge deck and the bed slab.It shows the necessity of a base plate for the ballastless track on the long-span plate-truss cable-stayed bridge.Comparison of the influence of different train speeds and stiffness of the elastic vibration-damping pad on the dynamic responses of the bridge deck and the bed slab is also made.The reasonable stiffness value of elastic vibration-damping pad is proposed.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.
基金the National Natural Science Foundation of China(51225804,U1234204,51222803,51178418)for the financial supports
文摘The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.
基金supported by National Key R&D Program of China[Grant No.2022YFB2603400]R&D Project of China State Railway Group Corporation Limited[Grant No.P2021G053]R&D Project of China Academy of Railway Science Corporation Limited[Grant No.2023YJ200].
文摘Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.
基金Engineering and Physical Sciences Research Council (EPSRC) is also acknowledged for funding this work under Grant Number EP/N009207/1.
文摘Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.
基金This work was supported by the National Natural Science Foundation of China(Nos.41901073 and 52078435)the Sichuan Science and Technology Program(No.2021YJ0001)。
文摘Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping.Although the higher stress due to the discontinuities of track structures has been discussed in past studies,few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern.In this paper,we performed a dynamic finite element analysis of a track-formation system,incorporating expansion joints as primary longitudinal discontinuities.The configurations of CRTS Ⅲ slab tracks and the contact conditions between concrete layers were considered.Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers,increasing nonlinearly at a larger coefficient of friction.Given a measured coefficient of friction of 0.7,the calculated longitudinal influencing length(9.0 m) matches with field data.The longitudinal influencing length is not affected with the increasing velocity.As stress concentration arises with expansion joints,the worstcase scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases.A stress concentration factor Cvon the roadbed is proposed;it increases with the increasing velocity,changing from 1.33 to 1.52 at velocities between 5 and 400 km/h.The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities.An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints.Although structural discontinuities induce stress raiser,the extent of concentration is mitigated with increasing depth at different velocity levels.
基金supported by the National Nature Science Foundation of China (U1234206 and 61503311)+4 种基金support under the Railways Technology Development Plan of China Railway Corporation (2016X008-J)the Fundamental Research Funds for the Central Universities (2682015CX039)supported by the National United Engineering Laboratory of Integrated and Intelligent Transportation
文摘This paper discusses the main impact factors of the local settlement and differential settlement of high- speed railway lines. The analysis results show that groundwater exploitation is the direct cause of differ- ential settlement. Based on the study of ballastless track additional load and of vehicle, track, and bridge dynamic responses under different differential settlements, a control standard of differential settlement during operation is proposed preliminarily.
基金the National Natural Science Foundation of China(Nos.51708457,11790283,and 51978587)the Fund from State Key Laboratory of Traction Power(2019TPL-T16)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the 111 Project(Grant No.B16041)。
文摘Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehic
基金supported by the National Natural Science foundation of China (No. 51408610)
文摘Gap exists in the interface of cement asphalt emulsion mortar and CRTS I track slab universally, which is more severe at four corners than other parts of the track slab. In this work, the temperature and elevation of CRTS I slab track with and without rail were measured continuously to study the influence mechanism of rail on the gap. The results show that the alternating temperature gradient of track slab is the main reason that causes the gap, and laying rail can efficiently decrease the gap size in the slab track without rail. Compared with the slab track without rail, the maximum elevation occurred at the corner, the maximum gapwidth and the maximum gap depth of the slab track with rail laid were decreased by 0.45 mm (25.7%), 0.75 mm (46.6%) and 9.5 mm (59.4%), respectively; meanwhile, the disqualification ratio at corners was reduced to 5.9%, which is 50% less than that of the track without rail. When elevation mismatch occurs in adjacent track slabs, a gasket should be placed at rail-bearing bed below the track slab in order to avoid the lower slab being dragged up by the higher slab and the further occurrence of new gap.
基金Project(2017YFB1201204)supported by National Key R&D Program of China。
文摘The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.
基金This work was supported by the National Key Research and Development Program of China(Nos.2021YFB2601000,2021YFF0502100)the National Natural Science Foundation of China(No.52208415)the Natural Science Foundation of Shaanxi Province,China(Nos.2021JQ-255,2022JQ-303).
文摘The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.
基金supported by the National Natural Science Foundation of China(grant numbers 52278466).
文摘In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.
基金supported by China Railway Eryuan Engineering Group Co.,Ltd。
文摘According to the characteristics of complex terrain and bad geological conditions in the southwest mountainous area of China, it is proposed that cast-in situ double-block ballastless track with layers and blocks structure should be adopted preferentially in the subgrade section of high-speed railway, which is conducive to the construction, prolongation of service life and maintenance of the ballastless track. Based on the finite element model, the dynamic performance, structural strength and stability of double-block ballastless track under high earthquake-intensity action are analyzed. The analysis shows that the relative displacement between the base slab of ballastless track and the subgrade may occur under 9 degree earthquake action. A new CRTS double-block ballastless track structure with a concave-convex structure between the base slab and the subgrade is proposed in the subgrade section, and its additional stress and relative displacement under earthquake are analyzed. The results show that the additional stress and relative displacement of the new ballastless track structure and the subgrade under 9-degree earthquake actions are small, which meet the high stability requirements of high-speed railway.
基金funded by the National Natural Science Foundation of China(No.51408610).
文摘Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry status,the effects of grouting funnel,slab pressing method,mortar expansion ratio,seepage ratio and grouting area on China Railway Track System Type(CRTS I)track slab geometry status were discussed in this paper.Design/methodology/approach–Combined with engineering practice,this paper studied the expansion law of filling layer mortar,the liquid level height of the filling funnel,the pressure plate device and the amount of exudation water and systematically analyzed the influence of filling layer mortar construction on the state of track slab.Relevant precautions and countermeasures were put forward.Findings–The results showed that the track slab floating values of four corners were different with the CA mortar grouting and the track slab corner near CA mortar grouting hole had the maximum floating values.The anti-floating effect of“7”shaped slab pressing device was more efficient than fixed-joint angle iron,and the slab floating value could be further decreased by increasing the amount of“7”shaped slab pressing devices.After CA mortar grouting,the track slab floating pattern had a close correlation with the expansion rate and water seepage rate of CA mortar over time and the expansion and water seepage rate of the mortar were faster when the temperature was high.Furthermore,the use of strip CA mortar filling under the rail bearing platform on bothsides could effectively reduce the float under the track slab,and it could also save mortar consumption and reduce costs.Originality/value–This study plays an important role in controlling the floating values,CA mortar dosage and the building cost of projects by grouting CA mortar at two flanks of filling space.The research results have guiding significance for the design and construction of China’s CRTS I,CRTS II and CRTS III track slab.
基金financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020 financially supported by: Base Funding-UIDB/04708/2020 of the CONSTRUCT-Institute of R&D in Structures and Construction-national funds through the FCT/ MCTES (PIDDAC)
文摘The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.