4f chemistry studies the chemical bonding characteristics of fifteen lanthanide (Ln) elements in the periodic table and their wide applications in materials sciences and engineering, which forms the scientific fundame...4f chemistry studies the chemical bonding characteristics of fifteen lanthanide (Ln) elements in the periodic table and their wide applications in materials sciences and engineering, which forms the scientific fundamentals ofⅥperiodic elements in the periodic table of elements. Orbital hybridization modes of Ln elements clarify their chemical bonding nature in all reaction systems. Wide coordination number (CN) option, ranging from 2 to 16, is the reason why Ln elements are the treasure of new materials, therefore, searching for novel materials may be well carried out via the rational design of coordination environment of central Ln cations to stabilize their variable energy states. Balance utilization of Ln elements is dependent on their coordination architecture in the crystallographic frame, Ln elements can be replaced by non-Ln elements when CN <10, and when CN≥10 expensive Ln elements can be replaced by those cheaper ones.展开更多
基金supported by the National Key Research and Development Program of China(2016YFB0701004)Jilin Province Science and Technology Development Project(20170101092JC)
文摘4f chemistry studies the chemical bonding characteristics of fifteen lanthanide (Ln) elements in the periodic table and their wide applications in materials sciences and engineering, which forms the scientific fundamentals ofⅥperiodic elements in the periodic table of elements. Orbital hybridization modes of Ln elements clarify their chemical bonding nature in all reaction systems. Wide coordination number (CN) option, ranging from 2 to 16, is the reason why Ln elements are the treasure of new materials, therefore, searching for novel materials may be well carried out via the rational design of coordination environment of central Ln cations to stabilize their variable energy states. Balance utilization of Ln elements is dependent on their coordination architecture in the crystallographic frame, Ln elements can be replaced by non-Ln elements when CN <10, and when CN≥10 expensive Ln elements can be replaced by those cheaper ones.