This paper documents the emergency response to the breaches of the Baige Barrier Lake. The lake was successively formed by landslides that occurred on October 10 and November 3, 2018 at the provincial border between S...This paper documents the emergency response to the breaches of the Baige Barrier Lake. The lake was successively formed by landslides that occurred on October 10 and November 3, 2018 at the provincial border between Sichuan and Tibet in China. The barrier lake created by the "10.10" landslide breached on October 12 and triggered a flood with a peak discharge around 10000 m^3/s. The residual landslide barrier was enhanced by a second landslide on November 3, resulting in a higher barrier with larger flood potential. An overflow channel was excavated in the crest of the barrier to prompt the breach to be triggered at a lower water level. The second breach happened on November 12 with a measured peak discharge of 31000 m^3/s. Nearly 75000 people were evacuated before the two breaches. In order to prevent the downstream dams from possible over-topping, nearly 3.27×10~8 m^3 of the stored volume was released from the Liyuan reservoir 688 km downstream of Baige Barrier Lake. This paper presents the measured hydrographs and the back-analysis results for the "11.03" barrier lake. It is shown that the modern models of dam breach hydraulics can reasonably reproduce the barrier breach hydrographs;however, further studies are needed to define the key parameters which highly influence the calculated results. Knowledge acquired during the emergency response to the case can be shared with experts working on breaches of embankment dams and can be referenced to promote both the theory study and the engineering practice to mitigate the potential risks caused by this type of catastrophic events.展开更多
Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating land...Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating landslides.However,DDA fails to accurately capture the degradation in shear strength of rock joints commonly observed in high-speed landslides.In this study,DDA is modified by incorporating simplified joint shear strength degradation.Based on the modified DDA,the kinematics of the Baige landslide that occurred along the Jinsha River in China on 10 October 2018 are reproduced.The violent starting velocity of the landslide is considered explicitly.Three cases with different violent starting velocities are investigated to show their effect on the landslide movement process.Subsequently,the landslide movement process and the final accumulation characteristics are analyzed from multiple perspectives.The results show that the violent starting velocity affects the landslide motion characteristics,which is found to be about 4 m/s in the Baige landslide.The movement process of the Baige landslide involves four stages:initiation,high-speed sliding,impact-climbing,low-speed motion and accumulation.The accumulation states of sliding masses in different zones are different,which essentially corresponds to reality.The research results suggest that the modified DDA is applicable to similar high-level rock landslides.展开更多
On 10th Oct.and 3rd Nov.2018,two successive landslides occurred in the Jinsha River catchment at Baige Village,Tibet Autonomous Region,China.The landslides blocked the major river and formed the barrier lake,which fin...On 10th Oct.and 3rd Nov.2018,two successive landslides occurred in the Jinsha River catchment at Baige Village,Tibet Autonomous Region,China.The landslides blocked the major river and formed the barrier lake,which finally caused the huge flood disaster loss.The hillslope at Baige landslide site has been still deforming after the 2018 slidings,which is likely to fail and block the Jinsha River again in the future.Therefore the investigation of 2018 flood disaster at the Baige landslide is of a great significance to provide a classic case for flood assessment and early warning for the future disaster.The detailed survey revealed that the outstanding inundations induced bank collapse disasters upstream the Baige landslide dams,and the field investigations and hydrological simulation suggested that the downstream of the Baige landslide were seriously flooded due to the two periods of the outburst floods.On these bases,the early warning process of potential outburst floods at the Baige landslide was advised,which contains four stages:Outburst Flood Simulating Stage,Outburst Flood Forecasting Stage,Emergency Plan and Emergency Evacuation Stage.The study offers a conceptual model for the mitigation of landslides and flood disasters in the high-relief mountain-ous region in Tibet.展开更多
基金supported by the National Key R&D Program of China(Grant No. 2018YFC1508600)。
文摘This paper documents the emergency response to the breaches of the Baige Barrier Lake. The lake was successively formed by landslides that occurred on October 10 and November 3, 2018 at the provincial border between Sichuan and Tibet in China. The barrier lake created by the "10.10" landslide breached on October 12 and triggered a flood with a peak discharge around 10000 m^3/s. The residual landslide barrier was enhanced by a second landslide on November 3, resulting in a higher barrier with larger flood potential. An overflow channel was excavated in the crest of the barrier to prompt the breach to be triggered at a lower water level. The second breach happened on November 12 with a measured peak discharge of 31000 m^3/s. Nearly 75000 people were evacuated before the two breaches. In order to prevent the downstream dams from possible over-topping, nearly 3.27×10~8 m^3 of the stored volume was released from the Liyuan reservoir 688 km downstream of Baige Barrier Lake. This paper presents the measured hydrographs and the back-analysis results for the "11.03" barrier lake. It is shown that the modern models of dam breach hydraulics can reasonably reproduce the barrier breach hydrographs;however, further studies are needed to define the key parameters which highly influence the calculated results. Knowledge acquired during the emergency response to the case can be shared with experts working on breaches of embankment dams and can be referenced to promote both the theory study and the engineering practice to mitigate the potential risks caused by this type of catastrophic events.
基金supported by the National Natural Science Foundations of China(grant numbers U22A20601 and 52209142)the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(grant number SKLGP2022K018)+1 种基金the Science&Technology Department of Sichuan Province(grant number 2023NSFSC0284)the Science and Technology Major Project of Tibetan Autonomous Region of China(grant number XZ202201ZD0003G)。
文摘Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating landslides.However,DDA fails to accurately capture the degradation in shear strength of rock joints commonly observed in high-speed landslides.In this study,DDA is modified by incorporating simplified joint shear strength degradation.Based on the modified DDA,the kinematics of the Baige landslide that occurred along the Jinsha River in China on 10 October 2018 are reproduced.The violent starting velocity of the landslide is considered explicitly.Three cases with different violent starting velocities are investigated to show their effect on the landslide movement process.Subsequently,the landslide movement process and the final accumulation characteristics are analyzed from multiple perspectives.The results show that the violent starting velocity affects the landslide motion characteristics,which is found to be about 4 m/s in the Baige landslide.The movement process of the Baige landslide involves four stages:initiation,high-speed sliding,impact-climbing,low-speed motion and accumulation.The accumulation states of sliding masses in different zones are different,which essentially corresponds to reality.The research results suggest that the modified DDA is applicable to similar high-level rock landslides.
基金The Second Tibetan Plateau Scientific Expedition and Research Program,No.2019QZKK0905National Key R&D Program of China,No.2018 YFC15050004National Natural Science Foundation Projects,No.42007248。
文摘On 10th Oct.and 3rd Nov.2018,two successive landslides occurred in the Jinsha River catchment at Baige Village,Tibet Autonomous Region,China.The landslides blocked the major river and formed the barrier lake,which finally caused the huge flood disaster loss.The hillslope at Baige landslide site has been still deforming after the 2018 slidings,which is likely to fail and block the Jinsha River again in the future.Therefore the investigation of 2018 flood disaster at the Baige landslide is of a great significance to provide a classic case for flood assessment and early warning for the future disaster.The detailed survey revealed that the outstanding inundations induced bank collapse disasters upstream the Baige landslide dams,and the field investigations and hydrological simulation suggested that the downstream of the Baige landslide were seriously flooded due to the two periods of the outburst floods.On these bases,the early warning process of potential outburst floods at the Baige landslide was advised,which contains four stages:Outburst Flood Simulating Stage,Outburst Flood Forecasting Stage,Emergency Plan and Emergency Evacuation Stage.The study offers a conceptual model for the mitigation of landslides and flood disasters in the high-relief mountain-ous region in Tibet.