基于与人交互的物体对人体行为识别的重要作用,本文提出了融合交互物体和能量信息等特征的三维复杂人体识别方法.首先提取手持物体的Hu矩作为交互物体特征,然后根据人体行为的生物学和运动学特征,从人体运动的能量角度提取人体骨架动能...基于与人交互的物体对人体行为识别的重要作用,本文提出了融合交互物体和能量信息等特征的三维复杂人体识别方法.首先提取手持物体的Hu矩作为交互物体特征,然后根据人体行为的生物学和运动学特征,从人体运动的能量角度提取人体骨架动能、姿态势能、关节点位置等构建了局部特征矩阵,并聚类为词袋(Bag Of Word,BOW),与交互物体特征构成最终的组合特征;为了自动分割交互物体,我们提出了基于Harris角点的种子区域生长法,快速完整地分割手持物体;最后利用RBFSVM方法进行人体行为识别.实验结果表明融合交互物体信息和能量特征的三维人体行为识别方法具有较高的识别率,尤其能够较大幅度降低易混淆复杂动作的误识别率.展开更多
Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature ...Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.展开更多
传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高...传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高。针对上述问题,提出了一种改进的k-means聚类视觉词典构造方法,该方法首先对初始值的选取进行了优化,克服了随机选取初始值对聚类性能的影响,其次基于三角形不等式对计算进行了简化,使生成的视觉词典更加稳定,计算复杂度更低,最后引入权值分布对图像进行基于视觉词典的表示,并将基于改进的视觉词典的词袋模型应用于图像分类,提高了分类性能。通过在Caltech 101和Caltech 256两个数据库进行实验,验证了本文方法的有效性,并分析了词典库大小对分类性能的影响。从实验结果可以看出,采用本文方法所得到的分类正确率提高了5%~8%。展开更多
图像分类作为图像处理和计算机视觉的重要组成部分,能够快速准确地对数字图像进行分析和管理.对基于bag of word(BOW)模型的分类问题进行了研究,针对图像理解中的图像相似度之间的关系,提出了一种最大间隔最近邻居分类算法,通过对成对...图像分类作为图像处理和计算机视觉的重要组成部分,能够快速准确地对数字图像进行分析和管理.对基于bag of word(BOW)模型的分类问题进行了研究,针对图像理解中的图像相似度之间的关系,提出了一种最大间隔最近邻居分类算法,通过对成对约束的度量学习算法,在优化目标中增加原空间数据分类的约束,学习到了一个可以反映当前样本数据的距离函数,并且在k-Nearest Neighbor(KNN)分类器上使用该学习到的距离函数来构建分类器,并在多个国际标准图像数据集上进行实验,结果表明:该算法相比传统的基于欧式距离的算法具备更高的正确率.展开更多
文摘基于与人交互的物体对人体行为识别的重要作用,本文提出了融合交互物体和能量信息等特征的三维复杂人体识别方法.首先提取手持物体的Hu矩作为交互物体特征,然后根据人体行为的生物学和运动学特征,从人体运动的能量角度提取人体骨架动能、姿态势能、关节点位置等构建了局部特征矩阵,并聚类为词袋(Bag Of Word,BOW),与交互物体特征构成最终的组合特征;为了自动分割交互物体,我们提出了基于Harris角点的种子区域生长法,快速完整地分割手持物体;最后利用RBFSVM方法进行人体行为识别.实验结果表明融合交互物体信息和能量特征的三维人体行为识别方法具有较高的识别率,尤其能够较大幅度降低易混淆复杂动作的误识别率.
文摘Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.
文摘传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高。针对上述问题,提出了一种改进的k-means聚类视觉词典构造方法,该方法首先对初始值的选取进行了优化,克服了随机选取初始值对聚类性能的影响,其次基于三角形不等式对计算进行了简化,使生成的视觉词典更加稳定,计算复杂度更低,最后引入权值分布对图像进行基于视觉词典的表示,并将基于改进的视觉词典的词袋模型应用于图像分类,提高了分类性能。通过在Caltech 101和Caltech 256两个数据库进行实验,验证了本文方法的有效性,并分析了词典库大小对分类性能的影响。从实验结果可以看出,采用本文方法所得到的分类正确率提高了5%~8%。
文摘图像分类作为图像处理和计算机视觉的重要组成部分,能够快速准确地对数字图像进行分析和管理.对基于bag of word(BOW)模型的分类问题进行了研究,针对图像理解中的图像相似度之间的关系,提出了一种最大间隔最近邻居分类算法,通过对成对约束的度量学习算法,在优化目标中增加原空间数据分类的约束,学习到了一个可以反映当前样本数据的距离函数,并且在k-Nearest Neighbor(KNN)分类器上使用该学习到的距离函数来构建分类器,并在多个国际标准图像数据集上进行实验,结果表明:该算法相比传统的基于欧式距离的算法具备更高的正确率.