Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt...Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability i展开更多
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency...An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.展开更多
Purpose-The Covid 19 prediction process is more indispensable to handle the spread and deathocurred rate because of Covid-19.However early and precise prediction of Covid-19 is more difcult because of different sizes ...Purpose-The Covid 19 prediction process is more indispensable to handle the spread and deathocurred rate because of Covid-19.However early and precise prediction of Covid-19 is more difcult because of different sizes and resolutions of input image Thus these challenges and problems experienced by traditional Covid-19 detection methods are considered as major motivation to develop JHBO-based DNFN.Design/methodology/approach-The major contribution of this research is to desigm an ffectualCovid-19 detection model using devised JHBObased DNFN,Here,the audio signal is considered as input for detecting Covid-19.The Gaussian filter is applied to input signal for removing the noises and then feature extraction is performed.The substantial features,like spectral rlloff.spectral bandwidth,Mel-frequency,cepstral coefficients (MFCC),spectral flatness,zero crossing rate,spectral centroid,mean square energy and spectral contract are extracted for further processing.Finally,DNFN is applied for detecting Covid 19 and the deep leaning model is trained by designed JHBO algorithm.Accordingly.the developed JHBO method is newly desigmed by inoorporating Honey Badger optimization Algorithm(HBA)and.Jaya algorithm.Findings-The performance of proposed hybrid optimization-based deep learming algorithm is estimated by meansof twoperformance metrics,namely testing accuracy,sensitivity and speificity of 09176,09218 and 09219.Research limitations/implications-The JHBO-based DNFN approach is developed for Covid-19 detection.The developed approach can be extended by including other hybrid optimization algorithms as well as other features can be extracted for further improving the detection performance.Practical implications-The proposed Covid-19 detection method is useful in various applications,like medical and so on,Originality/value-Developed JHBO-enabled DNFN for Covid-19 detection:An effective Covid-19 detection technique is introduced based on hybrid optimization-driven deep learning model The DNFN is used for detecting Covid-19,which cla展开更多
Globally,depression is perceived as the most recurrent and risky disor-der among young people and adults under the age of 60.Depression has a strong influence on the usage of words which can be observed in the form of ...Globally,depression is perceived as the most recurrent and risky disor-der among young people and adults under the age of 60.Depression has a strong influence on the usage of words which can be observed in the form of written texts or stories posted on social media.With the help of Natural Language Proces-sing(NLP)and Machine Learning(ML)techniques,the depressive signs expressed by people can be identified at the earliest stage from their Social Media posts.The proposed work aims to introduce an efficacious depression detection model unifying an exemplary feature extraction scheme and a hybrid Long Short-Term Memory network(LSTM)model.The feature extraction process combines a novel feature selection method called Elite Term Score(ETS)and Word2Vec to extract the syntactic and semantic information respectively.First,the ETS method leverages the document level,class level,and corpus level prob-abilities for computing the weightage/score of the terms.Then,the ideal and per-tinent set of features with a high ETS score is selected,and the Word2vec model is trained to generate the intense feature vector representation for the set of selected terms.Finally,the resultant word vector obtained is called EliteVec,which is fed to the hybrid LSTM model based on Honey Badger optimizer with population reduction technique(PHB)which predicts whether the input textual content is depressive or not.The PHB algorithm is integrated to explore and exploit the opti-mal hyperparameters for strengthening the performance of the LSTM network.The comprehensive experiments are carried out with two different Twitter depres-sion corpus based on accuracy and Root Mean Square Error(RMSE)metrics.The results demonstrated that the proposed EliteVec+LSTM+PHB model outperforms the state-of-art models with 98.1%accuracy and 0.0559 RMSE.展开更多
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ...Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.展开更多
Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service(SaaS).Several organizations have moved towards outsourcing over the cloud to reduc...Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service(SaaS).Several organizations have moved towards outsourcing over the cloud to reduce the burden on local resources.In this context,the metaheuristic optimization method is determined to be highly suitable for selecting appropriate services that comply with the requirements of the client’s requests,as the services stored over the cloud are too complex and scalable.To achieve better service composition,the parameters of Quality of Service(QoS)related to each service considered to be the best resource need to be selected and optimized for attaining potential services over the cloud.Thus,the cloud service composition needs to concentrate on the selection and integration of services over the cloud to satisfy the client’s requests.In this paper,a Hybrid Chameleon and Honey Badger Optimization Algorithm(HCHBOA)-based cloud service composition scheme is presented for achieving efficient services with satisfying the requirements ofQoS over the cloud.This proposed HCHBOA integrated the merits of the Chameleon Search Algorithm(CSA)and Honey Badger Optimization Algorithm(HBOA)for balancing the tradeoff between the rate of exploration and exploitation.It specifically used HBOA for tuning the parameters of CSA automatically so that CSA could adapt its performance depending on its incorporated tuning factors.The experimental results of the proposed HCHBOA with experimental datasets exhibited its predominance by improving the response time by 21.38%,availability by 20.93%and reliability by 19.31%with a minimized execution time of 23.18%,compared to the baseline cloud service composition schemes used for investigation.展开更多
Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurre...Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurred under non-uniform irradiance conditions.In the PV system,the global maximum power point(GMPP)is complex to track in the P-V curve due to the Partial shad-ing.Therefore,several tracking processes are performed using various methods like perturb and observe(P&O),hill climbing(HC),incremental conductance(INC),Fuzzy Logic,Whale Optimization Algorithm(WOA),Grey Wolf Optimi-zation(GWO)and Flying Squirrel Search Optimization(FSSO)etc.Though,the MPPT is not so efficient when the partial shading is increased.To increase the efficiency and convergences in MMPT,the Honey Badger optimization(HBO)algorithm is presented.This HBO model is motivated by the excellent foraging behaviour of honey badgers.This HBO model is used to achieve the best solution in GMPP tracking and speed convergence.The HBO methodology is also com-pared with prior P&O,WOA and FSSO methods using MATLAB.Therefore,the experiment shows that the HBO method is performed a higher tracking than all prior methods.展开更多
TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided...TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.展开更多
基金funded by the Researchers Supporting Program at King Saud University(RSPD2024R809).
文摘Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability i
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFF0607504)。
文摘An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.
文摘Purpose-The Covid 19 prediction process is more indispensable to handle the spread and deathocurred rate because of Covid-19.However early and precise prediction of Covid-19 is more difcult because of different sizes and resolutions of input image Thus these challenges and problems experienced by traditional Covid-19 detection methods are considered as major motivation to develop JHBO-based DNFN.Design/methodology/approach-The major contribution of this research is to desigm an ffectualCovid-19 detection model using devised JHBObased DNFN,Here,the audio signal is considered as input for detecting Covid-19.The Gaussian filter is applied to input signal for removing the noises and then feature extraction is performed.The substantial features,like spectral rlloff.spectral bandwidth,Mel-frequency,cepstral coefficients (MFCC),spectral flatness,zero crossing rate,spectral centroid,mean square energy and spectral contract are extracted for further processing.Finally,DNFN is applied for detecting Covid 19 and the deep leaning model is trained by designed JHBO algorithm.Accordingly.the developed JHBO method is newly desigmed by inoorporating Honey Badger optimization Algorithm(HBA)and.Jaya algorithm.Findings-The performance of proposed hybrid optimization-based deep learming algorithm is estimated by meansof twoperformance metrics,namely testing accuracy,sensitivity and speificity of 09176,09218 and 09219.Research limitations/implications-The JHBO-based DNFN approach is developed for Covid-19 detection.The developed approach can be extended by including other hybrid optimization algorithms as well as other features can be extracted for further improving the detection performance.Practical implications-The proposed Covid-19 detection method is useful in various applications,like medical and so on,Originality/value-Developed JHBO-enabled DNFN for Covid-19 detection:An effective Covid-19 detection technique is introduced based on hybrid optimization-driven deep learning model The DNFN is used for detecting Covid-19,which cla
文摘Globally,depression is perceived as the most recurrent and risky disor-der among young people and adults under the age of 60.Depression has a strong influence on the usage of words which can be observed in the form of written texts or stories posted on social media.With the help of Natural Language Proces-sing(NLP)and Machine Learning(ML)techniques,the depressive signs expressed by people can be identified at the earliest stage from their Social Media posts.The proposed work aims to introduce an efficacious depression detection model unifying an exemplary feature extraction scheme and a hybrid Long Short-Term Memory network(LSTM)model.The feature extraction process combines a novel feature selection method called Elite Term Score(ETS)and Word2Vec to extract the syntactic and semantic information respectively.First,the ETS method leverages the document level,class level,and corpus level prob-abilities for computing the weightage/score of the terms.Then,the ideal and per-tinent set of features with a high ETS score is selected,and the Word2vec model is trained to generate the intense feature vector representation for the set of selected terms.Finally,the resultant word vector obtained is called EliteVec,which is fed to the hybrid LSTM model based on Honey Badger optimizer with population reduction technique(PHB)which predicts whether the input textual content is depressive or not.The PHB algorithm is integrated to explore and exploit the opti-mal hyperparameters for strengthening the performance of the LSTM network.The comprehensive experiments are carried out with two different Twitter depres-sion corpus based on accuracy and Root Mean Square Error(RMSE)metrics.The results demonstrated that the proposed EliteVec+LSTM+PHB model outperforms the state-of-art models with 98.1%accuracy and 0.0559 RMSE.
文摘Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled.
文摘Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service(SaaS).Several organizations have moved towards outsourcing over the cloud to reduce the burden on local resources.In this context,the metaheuristic optimization method is determined to be highly suitable for selecting appropriate services that comply with the requirements of the client’s requests,as the services stored over the cloud are too complex and scalable.To achieve better service composition,the parameters of Quality of Service(QoS)related to each service considered to be the best resource need to be selected and optimized for attaining potential services over the cloud.Thus,the cloud service composition needs to concentrate on the selection and integration of services over the cloud to satisfy the client’s requests.In this paper,a Hybrid Chameleon and Honey Badger Optimization Algorithm(HCHBOA)-based cloud service composition scheme is presented for achieving efficient services with satisfying the requirements ofQoS over the cloud.This proposed HCHBOA integrated the merits of the Chameleon Search Algorithm(CSA)and Honey Badger Optimization Algorithm(HBOA)for balancing the tradeoff between the rate of exploration and exploitation.It specifically used HBOA for tuning the parameters of CSA automatically so that CSA could adapt its performance depending on its incorporated tuning factors.The experimental results of the proposed HCHBOA with experimental datasets exhibited its predominance by improving the response time by 21.38%,availability by 20.93%and reliability by 19.31%with a minimized execution time of 23.18%,compared to the baseline cloud service composition schemes used for investigation.
文摘Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurred under non-uniform irradiance conditions.In the PV system,the global maximum power point(GMPP)is complex to track in the P-V curve due to the Partial shad-ing.Therefore,several tracking processes are performed using various methods like perturb and observe(P&O),hill climbing(HC),incremental conductance(INC),Fuzzy Logic,Whale Optimization Algorithm(WOA),Grey Wolf Optimi-zation(GWO)and Flying Squirrel Search Optimization(FSSO)etc.Though,the MPPT is not so efficient when the partial shading is increased.To increase the efficiency and convergences in MMPT,the Honey Badger optimization(HBO)algorithm is presented.This HBO model is motivated by the excellent foraging behaviour of honey badgers.This HBO model is used to achieve the best solution in GMPP tracking and speed convergence.The HBO methodology is also com-pared with prior P&O,WOA and FSSO methods using MATLAB.Therefore,the experiment shows that the HBO method is performed a higher tracking than all prior methods.
基金supported by National Science Foundation of China(Grant No.52075152)Xining Big Data Service Administration.
文摘TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.