期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
狗獾夜间活动节律是受人类活动影响而形成的吗?基于青海湖地区的研究实例 被引量:16
1
作者 李峰 蒋志刚 《生物多样性》 CAS CSCD 北大核心 2014年第6期758-763,共6页
青海湖地区是目前已知的狗獾分布海拔最高点。为了解狗獾在青藏高原严酷生态环境下的生活史特点,并验证是否人类干扰造成了狗獾夜行性的假说,我们利用红外相机技术,结合无线电遥测和野外调查研究了青海湖湖东地区亚洲狗獾(Meles leucur... 青海湖地区是目前已知的狗獾分布海拔最高点。为了解狗獾在青藏高原严酷生态环境下的生活史特点,并验证是否人类干扰造成了狗獾夜行性的假说,我们利用红外相机技术,结合无线电遥测和野外调查研究了青海湖湖东地区亚洲狗獾(Meles leucurus)的种群密度、洞穴口的行为及活动节律。结果表明:(1)研究地区狗獾的平均种群密度为1.2±0.6只/km2,其分布受食物丰富度的影响;(2)狗獾基本在夜间活动,出洞时间集中在20:00–23:00之间,而回洞时间则集中在清晨4:00–7:00之间,23:00–4:00之间是狗獾的活动高峰;(3)狗獾离洞前行为主要是警戒行为,回洞穴时的行为主要是嬉戏行为,其他行为较少见,表达具有特定的时间性;(4)人类活动对于狗獾活动没有显著性影响(P<0.05)。 展开更多
关键词 行为 青藏高原 警戒行为 活动节律 MELES leucurus
原文传递
狗獾的繁殖特征及其重要医学研究价值 被引量:12
2
作者 刘玉堂 陈忠 《经济动物学报》 CAS 2010年第4期228-231,共4页
通过对人工养殖的31只狗獾观察发现,狗獾发情配种时间多分布在46月份、少数在79月份,不同于以往的国内文献报道。狗獾产仔时间在34月份,妊娠时间为210330 d。狗獾具有半冬眠特征,在34个月的冬眠期间,不出现肌力丧失、骨质疏松,并能定向... 通过对人工养殖的31只狗獾观察发现,狗獾发情配种时间多分布在46月份、少数在79月份,不同于以往的国内文献报道。狗獾产仔时间在34月份,妊娠时间为210330 d。狗獾具有半冬眠特征,在34个月的冬眠期间,不出现肌力丧失、骨质疏松,并能定向消耗脂肪为身体提供营养与能量而不损伤其他组织器官,弄清其生理机制,将会为治疗老年骨质疏松、长期卧床造成的肌力丧失、健康减肥等医学研究提供启示。 展开更多
关键词 狗獾 繁殖特征 医学研究价值
下载PDF
挖掘机獾爪趾仿生斗齿提高其入土性能仿真与试验 被引量:9
3
作者 马云海 裴高院 +3 位作者 王虎彪 吕雪漫 宋国风 佟金 《农业工程学报》 EI CAS CSCD 北大核心 2016年第18期67-72,共6页
为解决挖掘机斗齿入土阻力大,易断裂的问题,该文利用Handyscan700扫描仪获取獾右前爪中趾表面的三维点云,提取獾爪趾的侧面轮廓曲线,并进行拟合得到曲线方程,将获取的曲线方程运用到斗齿的设计中,利用三维软件建立斗齿模型。运用有限元... 为解决挖掘机斗齿入土阻力大,易断裂的问题,该文利用Handyscan700扫描仪获取獾右前爪中趾表面的三维点云,提取獾爪趾的侧面轮廓曲线,并进行拟合得到曲线方程,将获取的曲线方程运用到斗齿的设计中,利用三维软件建立斗齿模型。运用有限元分析软件对仿生斗齿和80型斗齿的力学性能和切土过程进行数值模拟,对比分析了力学性能的差异以及能量损耗与切土深度的关系。采用快速成型加工技术加工出了仿生斗齿与80型斗齿试样。利用电子万能试验机对2种试样进行了楔土试验,测定了楔入阻力与楔入深度的关系。结果表明:在施加相同载荷的情况下,仿生斗齿所产生的最大等效应力小于80型斗齿的,破坏的可能性小,比较安全;当斗齿的入土深度相同时,仿生斗齿的消耗的能量总小于80型斗齿;在同样条件下,仿生斗齿的楔入阻力较80型斗齿低11.9%~12.6%。该文以獾爪趾为仿生原型设计的挖掘机斗齿不仅解决了工程中遇到的问题,还为减阻部件的开发提供了新思路,具有重要的参考价值。 展开更多
关键词 仿生 模型 计算机仿真 斗齿 等效应力 阻力
下载PDF
漳卫南运河獾害防治技术研究与实践 被引量:1
4
作者 荆茂涛 李志林 +1 位作者 张浩然 康健 《中国水利》 2023年第15期49-53,共5页
獾洞严重破坏了河道堤防堤身的完整性,是影响堤防工程安全的重大隐患。獾害在漳卫南运河流域由来已久,介绍了漳卫南运河獾害的基本情况,獾害防治的传统做法、工程技术和新技术新工艺,在研究和分析獾及獾洞查找、獾害预防及治理的实践基... 獾洞严重破坏了河道堤防堤身的完整性,是影响堤防工程安全的重大隐患。獾害在漳卫南运河流域由来已久,介绍了漳卫南运河獾害的基本情况,獾害防治的传统做法、工程技术和新技术新工艺,在研究和分析獾及獾洞查找、獾害预防及治理的实践基础上,总结了应对獾害的经验做法,为下一步系统精准做好堤防獾害防治工作奠定良好基础。 展开更多
关键词 獾洞 堤防 危害 獾害防治 漳卫南运河
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
5
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability i 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
狗獾的生物学习性生态调查 被引量:5
6
作者 丁志强 高春艳 《白城师范学院学报》 2004年第1期94-96,共3页
本文从狗獾的外部特征及其生境和分布,狗獾的洞道结构与活动规律,食性及其对农作物的危害和繁殖四个方面介绍了狗獾的一些生物学习性,同时还介绍了它的利用价值。
关键词 狗獾 生物学习性 生态
下载PDF
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
7
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
下载PDF
Jaya Honey Badger optimization- based deep neuro-fuzzy network structure for detection of (SARS- CoV) Covid-19 disease by using respiratory sound signals
8
作者 Jawad Ahmad Dar Kamal Kr Srivastava Sajaad Ahmad Lone 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第2期173-197,共25页
Purpose-The Covid 19 prediction process is more indispensable to handle the spread and deathocurred rate because of Covid-19.However early and precise prediction of Covid-19 is more difcult because of different sizes ... Purpose-The Covid 19 prediction process is more indispensable to handle the spread and deathocurred rate because of Covid-19.However early and precise prediction of Covid-19 is more difcult because of different sizes and resolutions of input image Thus these challenges and problems experienced by traditional Covid-19 detection methods are considered as major motivation to develop JHBO-based DNFN.Design/methodology/approach-The major contribution of this research is to desigm an ffectualCovid-19 detection model using devised JHBObased DNFN,Here,the audio signal is considered as input for detecting Covid-19.The Gaussian filter is applied to input signal for removing the noises and then feature extraction is performed.The substantial features,like spectral rlloff.spectral bandwidth,Mel-frequency,cepstral coefficients (MFCC),spectral flatness,zero crossing rate,spectral centroid,mean square energy and spectral contract are extracted for further processing.Finally,DNFN is applied for detecting Covid 19 and the deep leaning model is trained by designed JHBO algorithm.Accordingly.the developed JHBO method is newly desigmed by inoorporating Honey Badger optimization Algorithm(HBA)and.Jaya algorithm.Findings-The performance of proposed hybrid optimization-based deep learming algorithm is estimated by meansof twoperformance metrics,namely testing accuracy,sensitivity and speificity of 09176,09218 and 09219.Research limitations/implications-The JHBO-based DNFN approach is developed for Covid-19 detection.The developed approach can be extended by including other hybrid optimization algorithms as well as other features can be extracted for further improving the detection performance.Practical implications-The proposed Covid-19 detection method is useful in various applications,like medical and so on,Originality/value-Developed JHBO-enabled DNFN for Covid-19 detection:An effective Covid-19 detection technique is introduced based on hybrid optimization-driven deep learning model The DNFN is used for detecting Covid-19,which cla 展开更多
关键词 Deep neuro fuzzy network Covid-19 detection Spectral centroid Honey badger optimization algorithm Zero crossing rate
原文传递
EliteVec: Feature Fusion for Depression Diagnosis Using Optimized Long Short-Term Memory Network
9
作者 S.Kavi Priya K.Pon Karthika 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1745-1766,共22页
Globally,depression is perceived as the most recurrent and risky disor-der among young people and adults under the age of 60.Depression has a strong influence on the usage of words which can be observed in the form of ... Globally,depression is perceived as the most recurrent and risky disor-der among young people and adults under the age of 60.Depression has a strong influence on the usage of words which can be observed in the form of written texts or stories posted on social media.With the help of Natural Language Proces-sing(NLP)and Machine Learning(ML)techniques,the depressive signs expressed by people can be identified at the earliest stage from their Social Media posts.The proposed work aims to introduce an efficacious depression detection model unifying an exemplary feature extraction scheme and a hybrid Long Short-Term Memory network(LSTM)model.The feature extraction process combines a novel feature selection method called Elite Term Score(ETS)and Word2Vec to extract the syntactic and semantic information respectively.First,the ETS method leverages the document level,class level,and corpus level prob-abilities for computing the weightage/score of the terms.Then,the ideal and per-tinent set of features with a high ETS score is selected,and the Word2vec model is trained to generate the intense feature vector representation for the set of selected terms.Finally,the resultant word vector obtained is called EliteVec,which is fed to the hybrid LSTM model based on Honey Badger optimizer with population reduction technique(PHB)which predicts whether the input textual content is depressive or not.The PHB algorithm is integrated to explore and exploit the opti-mal hyperparameters for strengthening the performance of the LSTM network.The comprehensive experiments are carried out with two different Twitter depres-sion corpus based on accuracy and Root Mean Square Error(RMSE)metrics.The results demonstrated that the proposed EliteVec+LSTM+PHB model outperforms the state-of-art models with 98.1%accuracy and 0.0559 RMSE. 展开更多
关键词 Depression detection dimensionality reduction feature extraction feature selection hybrid LSTM network population reduction honey badger optimization social media twitter
下载PDF
Automatic Image Annotation Using Adaptive Convolutional Deep Learning Model
10
作者 R.Jayaraj S.Lokesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期481-497,共17页
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ... Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled. 展开更多
关键词 Deep learning model J-image segmentation honey badger algorithm convolutional neural network image annotation
下载PDF
Hybrid Chameleon and Honey Badger Optimization Algorithm for QoS-Based Cloud Service Composition Problem
11
作者 G.Manimala A.Chinnasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期393-412,共20页
Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service(SaaS).Several organizations have moved towards outsourcing over the cloud to reduc... Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service(SaaS).Several organizations have moved towards outsourcing over the cloud to reduce the burden on local resources.In this context,the metaheuristic optimization method is determined to be highly suitable for selecting appropriate services that comply with the requirements of the client’s requests,as the services stored over the cloud are too complex and scalable.To achieve better service composition,the parameters of Quality of Service(QoS)related to each service considered to be the best resource need to be selected and optimized for attaining potential services over the cloud.Thus,the cloud service composition needs to concentrate on the selection and integration of services over the cloud to satisfy the client’s requests.In this paper,a Hybrid Chameleon and Honey Badger Optimization Algorithm(HCHBOA)-based cloud service composition scheme is presented for achieving efficient services with satisfying the requirements ofQoS over the cloud.This proposed HCHBOA integrated the merits of the Chameleon Search Algorithm(CSA)and Honey Badger Optimization Algorithm(HBOA)for balancing the tradeoff between the rate of exploration and exploitation.It specifically used HBOA for tuning the parameters of CSA automatically so that CSA could adapt its performance depending on its incorporated tuning factors.The experimental results of the proposed HCHBOA with experimental datasets exhibited its predominance by improving the response time by 21.38%,availability by 20.93%and reliability by 19.31%with a minimized execution time of 23.18%,compared to the baseline cloud service composition schemes used for investigation. 展开更多
关键词 Cloud service composition quality of service chameleon search algorithm honey badger optimization algorithm software as a service
下载PDF
An Efficient Honey Badger Optimization Based Solar MPPT Under Partial Shading Conditions
12
作者 N.Rajeswari S.Venkatanarayanan 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1311-1322,共12页
Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurre... Due to the enormous utilization of solar energy,the photovoltaic(PV)system is used.The PV system is functioned based on a maximum power point(MPP).Due to the climatic change,the Partial shading conditions have occurred under non-uniform irradiance conditions.In the PV system,the global maximum power point(GMPP)is complex to track in the P-V curve due to the Partial shad-ing.Therefore,several tracking processes are performed using various methods like perturb and observe(P&O),hill climbing(HC),incremental conductance(INC),Fuzzy Logic,Whale Optimization Algorithm(WOA),Grey Wolf Optimi-zation(GWO)and Flying Squirrel Search Optimization(FSSO)etc.Though,the MPPT is not so efficient when the partial shading is increased.To increase the efficiency and convergences in MMPT,the Honey Badger optimization(HBO)algorithm is presented.This HBO model is motivated by the excellent foraging behaviour of honey badgers.This HBO model is used to achieve the best solution in GMPP tracking and speed convergence.The HBO methodology is also com-pared with prior P&O,WOA and FSSO methods using MATLAB.Therefore,the experiment shows that the HBO method is performed a higher tracking than all prior methods. 展开更多
关键词 PV system gmpp tracking CONVERGENCE honey badger optimization digging and honey phase
下载PDF
An Improved Honey Badger Algorithm through Fusing Multi-Strategies
13
作者 Zhiwei Ye Tao Zhao +2 位作者 Chun Liu Daode Zhang Wanfang Bai 《Computers, Materials & Continua》 SCIE EI 2023年第8期1479-1495,共17页
TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided... TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA. 展开更多
关键词 Honey badger Algorithm multi-strategies fusion tent chaotic mapping compound random factors
下载PDF
圈养条件下狗獾的夜活动节律及时间分配 被引量:3
14
作者 谢志刚 楮可龙 +5 位作者 蒋文忠 徐循 谢一民 裴恩乐 袁晓 徐宏发 《湖北农业科学》 北大核心 2011年第10期2070-2073,共4页
对上海市奉贤区申亚生态园围栏内4只狗獾(1雄3雌)的行为和夜间活动节律采用红外夜间监视仪(IKENO/OK-203ND)进行观察。结果表明,狗獾夜间具有较高的活动频率,其中21∶30~23∶00和1∶30~3∶00为狗獾活动的高峰期,整个活动频率曲线呈&qu... 对上海市奉贤区申亚生态园围栏内4只狗獾(1雄3雌)的行为和夜间活动节律采用红外夜间监视仪(IKENO/OK-203ND)进行观察。结果表明,狗獾夜间具有较高的活动频率,其中21∶30~23∶00和1∶30~3∶00为狗獾活动的高峰期,整个活动频率曲线呈"M"型;各行为时间分配方面,整个夜间狗獾取食和挖洞行为所占比例最高,而警戒、移动等行为在夜间发生的较为随机,只是在活动高峰期出现较小波动;雄性个体整个夜间的主要活动为取食和其他,而雌性个体的主要活动为取食和挖洞,用于移动和其他行为的时间较少,推测为性别因素导致上述差异;晴天狗獾在取食、移动、挖洞和其他行为上的时间分配都高于雨天,但仅取食(P=0.028)和移动(P=0.040)行为的差异显著,天气因素对狗獾行为时间分配的影响较显著。 展开更多
关键词 狗獾 夜活动节律 时间分配
下载PDF
京杭运河邵伯高邮段栖息地破碎化对狗獾种群数量分布的影响 被引量:3
15
作者 崔超 顾晨 +2 位作者 谢燕锦 魏万红 殷宝法 《生态科学》 CSCD 2020年第1期60-64,共5页
栖息地破碎是生物多样性下降的主要原因之一。栖息地破碎引起的面积效应、隔离效应和边缘效应能影响动物种群的绝灭阈值、分布、多度、种间关系以及生态系统过程,最终影响动物种群的数量分布。2006年10-11月和2007年10-11月,利用全球定... 栖息地破碎是生物多样性下降的主要原因之一。栖息地破碎引起的面积效应、隔离效应和边缘效应能影响动物种群的绝灭阈值、分布、多度、种间关系以及生态系统过程,最终影响动物种群的数量分布。2006年10-11月和2007年10-11月,利用全球定位系统(GPS)、地理信息系统(GIS)和样方法定量分析京杭运河邵伯至高邮段狗獾栖息地破碎化程度,确定不同斑块的面积、斑块距离、斑块隔离度以及栖息地质量对斑块中狗獾数量分布的影响。结果表明,各个斑块内狗獾的洞口数、粪堆数与该斑块的面积显著的正相关(r=0.961,P=0.039;r=0.999,P=0.023),但与斑块距离、斑块隔离度无显著的相关性(P>0.05)。栖息地的质量也会影响狗獾的数量分布,多元线性逐步回归分析表明,人类干扰和与栖息地的郁闭性显著的影响狗獾的数量分布。以上结果说明,京杭运河邵伯高邮段栖息地的破碎化程度对狗獾的数量分布还没有造成显著的直接影响,但会间接降低栖息地的质量,进而影响狗獾的生存。 展开更多
关键词 狗獾 生境破碎 生境丧失 种群数量分布 斑块面积
下载PDF
狗獾前肢挖掘洞穴运动图像采集 被引量:3
16
作者 谷志新 郑文超 《经济动物学报》 CAS 2013年第3期152-154,共3页
狗獾善于打洞,挖洞速度极快,研究狗獾挖掘时的运动特性,为研制挖掘机器人在自主挖掘中遇到困难时提供理论依据,使其具有更高的自主适应性,提高其速度和精度。本研究在时间域和空间域内分析狗獾挖洞时的运动特性,为狗獾佩戴红外光点测量... 狗獾善于打洞,挖洞速度极快,研究狗獾挖掘时的运动特性,为研制挖掘机器人在自主挖掘中遇到困难时提供理论依据,使其具有更高的自主适应性,提高其速度和精度。本研究在时间域和空间域内分析狗獾挖洞时的运动特性,为狗獾佩戴红外光点测量系统,进行运动学数据捕捉试验,提供受力分析运动轨迹。利用HALCON采集系统采集红外光点的运动数据,对数据进行运算与处理,从而获得狗獾关节处的相关运动学参数。 展开更多
关键词 狗獾 HALCON 运动学
下载PDF
Badger和Lummus苯乙烯工艺能耗对比分析 被引量:2
17
作者 齐向伟 《化工管理》 2017年第21期75-76,78,共3页
从代表当今苯乙烯主流技术的两家专利商贝杰尔和鲁姆斯技术的能耗对比分析入手,对这两种生产苯乙烯产品的工艺技术特点进行论述,从能耗角度分析为潜在的苯乙烯生产商选择工艺路线提供技术参考。装置物耗由于采用不同厂家的催化剂会出现... 从代表当今苯乙烯主流技术的两家专利商贝杰尔和鲁姆斯技术的能耗对比分析入手,对这两种生产苯乙烯产品的工艺技术特点进行论述,从能耗角度分析为潜在的苯乙烯生产商选择工艺路线提供技术参考。装置物耗由于采用不同厂家的催化剂会出现较大差别,在此不进行论述。 展开更多
关键词 badger LUMMAS 苯乙烯 工艺 能耗
下载PDF
狗獾东北亚种冬眠期与非冬眠期血液生化指标的对比研究 被引量:2
18
作者 冯成武 李彦东 +2 位作者 王冬梅 邹爱红 刘玉堂 《野生动物学报》 北大核心 2017年第4期593-598,共6页
狗獾东北亚种(Meles meles amurensis)具有较长的冬眠期,冬眠期间的脂肪代谢及骨钙平衡等特殊生理机制具有极其重要的医学研究价值。本实验于冬眠期与非冬眠期随机选取37只健康的雄性狗獾,分成冬眠组(14只)和非冬眠组(23只),空腹采集上... 狗獾东北亚种(Meles meles amurensis)具有较长的冬眠期,冬眠期间的脂肪代谢及骨钙平衡等特殊生理机制具有极其重要的医学研究价值。本实验于冬眠期与非冬眠期随机选取37只健康的雄性狗獾,分成冬眠组(14只)和非冬眠组(23只),空腹采集上述2组动物的血液,利用全自动生化分析仪对29项血清生化指标进行检测,比较其生化指标间的差异,分析机体内能量代谢和营养状况等方面的变化。研究结果表明非冬眠组血糖(GLU)、乳酸脱氢酶(LDH)含量显著低于冬眠组,而碱性磷酸酶(ALP)、r-谷氨酰转肽酶(GGT)、钙(Ca)含量在冬眠期则显著降低。其余指标间无统计学上的显著差异。在冬眠期,血糖和乳酸脱氢酶含量升高可能与维持某些必要的生理活动和酸碱平衡有关,碱性磷酸酶、r-谷氨酰转肽酶、钙含量显著降低则可能是为了减少能量消耗。这些生化指标的变化与其长期进化而形成的半冬眠的特性有关,是机体与外界环境相适应的表现。 展开更多
关键词 狗獾 冬眠 血液 生化指标 能量代谢
下载PDF
宁夏贺兰山地区狗獾夏季食性研究 被引量:2
19
作者 任毅 王继飞 +2 位作者 高惠 刘振生 滕丽微 《野生动物学报》 北大核心 2019年第3期627-633,共7页
利用粪便分析法对宁夏贺兰山地区狗獾的夏季食性进行了研究。采集狗獾活动范围内的粪样,运用频率法和生物量比法对数据进行处理,得到狗獾夏季的食性组成和比例。结果显示,狗獾属杂食性广食者,其夏季食物组成共有10种6大类,从出现频率来... 利用粪便分析法对宁夏贺兰山地区狗獾的夏季食性进行了研究。采集狗獾活动范围内的粪样,运用频率法和生物量比法对数据进行处理,得到狗獾夏季的食性组成和比例。结果显示,狗獾属杂食性广食者,其夏季食物组成共有10种6大类,从出现频率来看,食物组成主要是昆虫(38.22%)、果实(13.78%)、蚯蚓(12.89%)、昆虫幼虫(12.00%)等,从生物量比来看,食物组成主要是蚯蚓(61.83%)、果实(29.42%)、昆虫(4.05%)、昆虫幼虫(3.15%)等,两种结果都显示蚯蚓在狗獾的夏季食谱中占据重要位置。根据粪样分析结果,计算出其夏季食性的Shannon-Wiener指数H′为1.077,均匀性指数E为0.468,标准Levins生态位宽度指数Bsta为0.131。在与张广才岭地区的狗獾夏季食性组成的对比中发现,两者存在一定差异,但差异不显著(P=0.965)。 展开更多
关键词 狗獾 食性 粪便分析法 夏季 贺兰山
下载PDF
青海湖地区狗獾分类地位和狗獾属进化历史探讨 被引量:1
20
作者 罗晓 李峰 +1 位作者 陈静 蒋志刚 《生物多样性》 CAS CSCD 北大核心 2016年第6期694-700,共7页
本研究选择线粒体细胞色素b(cytochrome b,Cyt b)和控制区(control region,CR)片段作为分子标记,探讨了青海湖地区狗獾(Meles sp.)的系统发育地位和狗獾属分歧时间。研究结果支持目前将狗獾属分为4个种的结论。Cyt b和CR片段序列拼接后... 本研究选择线粒体细胞色素b(cytochrome b,Cyt b)和控制区(control region,CR)片段作为分子标记,探讨了青海湖地区狗獾(Meles sp.)的系统发育地位和狗獾属分歧时间。研究结果支持目前将狗獾属分为4个种的结论。Cyt b和CR片段序列拼接后总长1,652 bp,23条序列共定义了21个单倍型。研究结果表明欧亚大陆狗獾分为东西两个支系,每个支系进一步分为两个种:东部支系包括亚洲狗獾(M.leucurus)和日本狗獾(M.anakuma);西部支系包括欧洲狗獾(M.meles)和西南亚狗獾(M.canescens)。贝叶斯树和单倍型网络关系图都支持青海湖地区狗獾属于亚洲狗獾。分歧时间的估算结果与古生物学证据相符,东部支系和西部支系在2.24 Ma左右产生分歧,西南亚狗獾在1.27Ma左右从欧洲狗獾分出,而日本狗獾和亚洲狗獾的分化时间为0.99 Ma左右。 展开更多
关键词 狗獾 青海湖地区 细胞色素B 控制区 系统发育关系
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部