期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于光谱技术的Bipls算法结合CARS算法的苹果可溶性固形物含量检测 被引量:10
1
作者 饶利波 陈晓燕 庞涛 《发光学报》 EI CAS CSCD 北大核心 2019年第3期389-395,共7页
可溶性固形物含量是判断苹果内部品质的重要参考属性之一。利用高光谱技术获取苹果感兴趣区域的反射光谱,以S-G平滑(Savitzky-Golay smoothing)和直接正交信号校正(Direct orthogonal signal correction, DOSC)算法对光谱数据进行梯度... 可溶性固形物含量是判断苹果内部品质的重要参考属性之一。利用高光谱技术获取苹果感兴趣区域的反射光谱,以S-G平滑(Savitzky-Golay smoothing)和直接正交信号校正(Direct orthogonal signal correction, DOSC)算法对光谱数据进行梯度预处理后,用后向区间偏最小二乘法(Bipls)优选出3,5,6,7,8,9,13,14,15,16,17,18,19,20,21,23等16个子区间,共计177个波长。结合竞争自适应重加权采样算法(CARS)再作进一步筛选,提取出449.6,512.9,544.8,547.2,594.3,596.8,928.2 nm等7个特征波长,利用偏最小二乘算法(PLS)建立基于特征波长的可溶性固形物含量检测模型,所得模型评价为R_c=0.906 2,RMSEC为0.482 2,R_p=0.871 6,RMSEP为0.614 0。该算法模型预测性能同Bipls和Bipls-SPA模型相比更为优异,证明了Bipls结合CARS算法在提高苹果可溶性固体物含量检测精度方面的有效性。 展开更多
关键词 可溶性固形物含量 后向区间偏最小二乘 竞争自适应重加权采样 偏最小二乘
下载PDF
玉米秸秆纤维素和半纤维素NIRS特征波长优选 被引量:9
2
作者 刘金明 初晓冬 +3 位作者 王智 许永花 李文哲 孙勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第3期743-750,共8页
预处理是提高玉米秸秆生物转化利用效率的有效途径。玉米秸秆经生物炼制转化为生物燃料时,转化率与其原料内的纤维素和半纤维素含量直接相关。为了实现对预处理后玉米秸秆的生物炼制过程的有效调控,提出使用近红外光谱(NIRS)对玉米秸秆... 预处理是提高玉米秸秆生物转化利用效率的有效途径。玉米秸秆经生物炼制转化为生物燃料时,转化率与其原料内的纤维素和半纤维素含量直接相关。为了实现对预处理后玉米秸秆的生物炼制过程的有效调控,提出使用近红外光谱(NIRS)对玉米秸秆的纤维素和半纤维素含量进行快速检测,解决传统化学方法测试速度慢、成本高的问题。为了提高NIRS检测的效率和精度,将遗传算法与模拟退火算法相结合构建遗传模拟退火算法(GSA)用于预处理后玉米秸秆纤维素和半纤维素含量NIRS特征波长优选。GSA算法以NIRS波长点数为码长进行二进制编码,以偏最小二乘法(PLS)回归模型的交叉验证均方根误差为目标函数,结合温度参数设计适应度函数,基于Metropolis判别准则实现扰动解的选择复制,能够在避免早熟的同时有效提高进化后期的搜索效率。采用碱预处理、生物预处理及其相结合的方法对采集的玉米秸秆进行预处理后制备样品120个,并测定其纤维素和半纤维素含量及NIRS。使用7点Savitzky-Golay平滑结合多元散射校正和标准正则变换对光谱进行预处理后,利用Kennard-Stone法按3∶1比例划分校正集和验证集。然后,使用GSA算法对NIRS全谱进行特征波长优选(记为Full-GSA)、对协同区间偏最小二乘法(SiPLS)优选后谱区进行特征波长优选(记为SiPLS-GSA)、对反向区间偏最小二乘法(BiPLS)优选后谱区进行特征波长优选(记为BiPLS-GSA),并使用PLS回归模型和验证集对特征波长优选结果进行评测。Full-GSA以全谱1 557个波长点为基因,执行16次算法,优选出118个纤维素特征波长点和164个半纤维素特征波长点。SiPLS-GSA经SiPLS优选的纤维素和半纤维素谱区波长点数分别为388个和160个,再经GSA进一步优选后得到157个纤维素特征波长点和148个半纤维素特征波长点。BiPLS-GSA经BiPLS优选的纤维素和半纤维素谱区波长� 展开更多
关键词 玉米秸秆 近红外光谱 遗传模拟退火算法 协同区间偏最小二乘法 反向区间偏最小二乘法 特征波长
下载PDF
近红外光谱法测定面粉的水分、脂肪、碳水化合物和蛋白质含量 被引量:6
3
作者 覃统佳 刘冬 +3 位作者 从彦丽 黄林森 唐旭蔚 周志航 《食品工业科技》 CAS 北大核心 2020年第12期256-263,共8页
应用近红外光谱技术结合不同的定量分析方法建立面粉4种组分的快速定量模型。国标法测定68种面粉样品的水分、脂肪、碳水化合物和蛋白质的含量,并采集其近红外漫反射光谱图。选取58个校正集和10个验证集样品,通过马氏距离法剔除异常样品... 应用近红外光谱技术结合不同的定量分析方法建立面粉4种组分的快速定量模型。国标法测定68种面粉样品的水分、脂肪、碳水化合物和蛋白质的含量,并采集其近红外漫反射光谱图。选取58个校正集和10个验证集样品,通过马氏距离法剔除异常样品后,对比17种光谱预处理方式所建立的基于全光谱的偏最小二乘法(partial least squares,PLS)定量模型效果,在最佳预处理方法的基础上,采用向后区间偏最小二乘法(Backward interval PLS,BiPLS)筛选特征光谱,进一步得到最佳定量模型。结果表明,所建立的模型校正集相关系数Rcv均大于0.9650,内部交叉验证均方根误差均小于0.328;验证集相关系数均大于0.9926,预测均方根误差均低于0.383。因此,模型具有较好的准确性和稳定性,能应用于面粉的多指标快速检测。 展开更多
关键词 近红外光谱 面粉 偏最小二乘法(PLS) 向后区间偏最小二乘法(bipls)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部