Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep...Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.展开更多
Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performa...Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performance of reservoir dams.In simulations of potential spontaneous ruptures,fault geometry,regional stress fields,constitutive parameters of the fault friction law,and many other factors control the slip rate,morphology,and dislocation of the rupture,thereby affecting the simulated ground motion parameters.The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential M>7 earthquake events on the Leibo Middle Fault(LBMF)and the Mabian-Yanjing Fault(MB-YJF)in the Xiluodu dam(XLD)region.Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur.We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane,and fault geometry affects the spatial distribution of the rupture range.Under the same regional stress field magnitude and orientation,a more destructive,high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.展开更多
文摘Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.
基金jointly funded by the National Key Research and Development Program of China(No.2017YFC0404901)the Special Scientific Research Fund of the Institute of Geophysics of China Earthquake Administration(Nos.DQJB19B27,DQJB19A0123,DQJB21X25,DQJB20X09)。
文摘Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performance of reservoir dams.In simulations of potential spontaneous ruptures,fault geometry,regional stress fields,constitutive parameters of the fault friction law,and many other factors control the slip rate,morphology,and dislocation of the rupture,thereby affecting the simulated ground motion parameters.The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential M>7 earthquake events on the Leibo Middle Fault(LBMF)and the Mabian-Yanjing Fault(MB-YJF)in the Xiluodu dam(XLD)region.Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur.We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane,and fault geometry affects the spatial distribution of the rupture range.Under the same regional stress field magnitude and orientation,a more destructive,high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.