Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was...Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.展开更多
[目的]通过无人机遥感监测技术对泄漏CO_2响应效果的研究,为CO_2的捕捉与封存(carbon capture and storage,CCS)泄漏风险事故的新型监测技术的应用提供理论基础。[方法]通过环境背景值监测、试验监测、理论模拟和数据对比分析的方法为...[目的]通过无人机遥感监测技术对泄漏CO_2响应效果的研究,为CO_2的捕捉与封存(carbon capture and storage,CCS)泄漏风险事故的新型监测技术的应用提供理论基础。[方法]通过环境背景值监测、试验监测、理论模拟和数据对比分析的方法为无人机遥感监测技术对CCS泄漏风险事故的响应效果进行了研究。[结果]以泄放CO_2引起环境中CO_2浓度变化幅度超过某一断面环境背景最高值一个标准差作为响应浓度差,在试验条件下无人机在距离泄漏源10 m,高9 m的位置响应到浓度变化,响应浓度为502mg/kg,此处的环境背景值为448mg/kg。通过高斯模型进行计算发现该试验条件下泄放的CO_2扩散至此处的理论数值为40mg/kg。[结论]无人机遥感监测系统能够对泄漏的CO_2做出响应,能够应用到实际CCS泄漏事故中,且因为工业尺度下的泄漏量很大,无人机遥感监测平台能够对大空间场做出有效的监测响应。展开更多
基金Project (No. 50578144) supported by the National Natural ScienceFoundation of China
文摘Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.
基金Project supported by the Fund of State Key Laboratory of Subtropical Building Science,South China University of Technology,China(No.2019ZB28)the Key Project of Foundation and Frontier Research of Chongqing,China(No.cstc2017jcyjAX0187)