In order to predict flow instability of wear-resistant steel BTW1, the hot compressions of wear-resistant steel BTW1 were firstly performed at the temperature of 900-1150 ℃ and at the strain rate of 0.05-15 s-1. Then...In order to predict flow instability of wear-resistant steel BTW1, the hot compressions of wear-resistant steel BTW1 were firstly performed at the temperature of 900-1150 ℃ and at the strain rate of 0.05-15 s-1. Then, the constitutive relation was established based on Arrhenius-type hyperbolic sine equation. The results demonstrated that the flow stress depended on the deformation temperature and strain rate. When the deformation temperature kept constant, the flow stress increased as the strain rate increased. When the strain rate remained constant, the flow stress decreased as the temperature increased. The flow stresses calculated by constitutive equations were in a good agreement with experimental results. The apparent activation energy for deformation in the above processing region was estimated to be 369 kJ tool-1. A processing map could be obtained by the superimposition of an instability map on a power dissipation map. Based on the analysis of processing map and the microstructures, the theological instability regimes of strain rate and temperature for hot deformation of wear-resistant steel BTWl had been identified.展开更多
The variation of in BTW model in presence of holes (dissipative sites) has been studied. The value of ?decreases as the fraction of number of holes increases. Interestingly, it is observed that the variation of the ra...The variation of in BTW model in presence of holes (dissipative sites) has been studied. The value of ?decreases as the fraction of number of holes increases. Interestingly, it is observed that the variation of the rate of change of ?with the fraction of number of holes is different for the two different types of distribution of holes over the lattice. When the holes are randomly distributed over the lattice then the dissipation is more compared to that of the case when the holes are present in the form of a single compact cluster with same fraction. The value of ?is less in the first case than that observed in the second case.展开更多
Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladd...Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. U1510131) and the Applied Basic Research Project of Shanxi Province (Nos. 201701D121078 and 201701D221143).
文摘In order to predict flow instability of wear-resistant steel BTW1, the hot compressions of wear-resistant steel BTW1 were firstly performed at the temperature of 900-1150 ℃ and at the strain rate of 0.05-15 s-1. Then, the constitutive relation was established based on Arrhenius-type hyperbolic sine equation. The results demonstrated that the flow stress depended on the deformation temperature and strain rate. When the deformation temperature kept constant, the flow stress increased as the strain rate increased. When the strain rate remained constant, the flow stress decreased as the temperature increased. The flow stresses calculated by constitutive equations were in a good agreement with experimental results. The apparent activation energy for deformation in the above processing region was estimated to be 369 kJ tool-1. A processing map could be obtained by the superimposition of an instability map on a power dissipation map. Based on the analysis of processing map and the microstructures, the theological instability regimes of strain rate and temperature for hot deformation of wear-resistant steel BTWl had been identified.
文摘The variation of in BTW model in presence of holes (dissipative sites) has been studied. The value of ?decreases as the fraction of number of holes increases. Interestingly, it is observed that the variation of the rate of change of ?with the fraction of number of holes is different for the two different types of distribution of holes over the lattice. When the holes are randomly distributed over the lattice then the dissipation is more compared to that of the case when the holes are present in the form of a single compact cluster with same fraction. The value of ?is less in the first case than that observed in the second case.
基金the National Natural Science Foundation of China(No.U151013)the Key Research and Development Program of Shanxi Province(Nos.201603D111004 and 201603D121010)+1 种基金the Natural Science Foundation of Shanxi Province of Chinathe Provincial Special Fund for Coordinative Innovation Center of Taiyuan Heavy Machinery Equipmen(No.20171003)
文摘Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.