This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set...This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set's discernible matrix is proposed to identify and classify micro-targets. To avoid the complicated calibration for intrinsic parameters of camera, an improved Broyden's method is proposed to estimate the image Jacobian matrix which employs Chebyshev polynomial to construct a cost function to approximate the optimization value. Finally, a visual controller is designed for a robotic micromanipulation system. The experiment results of micro-parts assembly show that the proposed methods and algorithms are effective and feasible.展开更多
The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip fa...The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions is addressed and an effective numerical scheme is adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to find that the slip increases the momentum and thermal boundary layer thickness. As the slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid. The presence of a magnetic field has also substantial effects on velocity and temperature fields.展开更多
This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core obj...This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for 展开更多
Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under ...Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under the convexity assumption on objective function, the global convergence of the Broyden's class is proved.展开更多
In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmina...In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.展开更多
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. The approach is capable of reconstructing the quantitative optical parameters (absorption co...Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. The approach is capable of reconstructing the quantitative optical parameters (absorption coefficient and scattering coefficient) of a soft tissue. The motivation for reconstructing the optical property variation is that it and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and in contrast with noisy measurements. The parameter recovery known as inverse problem in highly scattering biological tissues is a nonlinear and ill-posed problem and is generally solved through iterative methods. The algorithm uses a forward model to arrive at a prediction flux density at the tissue boundary. The forward model uses light transport models such as stochastic Monte Carlo simulation or deterministic methods such as radioactive transfer equation (RTE) or a simplified version of RTE namely the diffusion equation (DE). The finite element method (FEM) is used for discretizing the diffusion equation. The frequently used algorithm for solving the inverse problem is Newton-based Model based Iterative Image Reconstruction (N-MoBIIR). Many Variants of Gauss-Newton approaches are proposed for DOT reconstruction. The focuses of such developments are 1) to reduce the computational complexity;2) to improve spatial recovery;and 3) to improve contrast recovery. These algorithms are 1) Hessian based MoBIIR;2) Broyden-based MoBIIR;3) adjoint Broyden-based MoBIIR;and 4) pseudo-dynamic approaches.展开更多
In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we f...In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we from some numerical results, discuss how to choose the number m to determine the approximating matrix properly in practical use.展开更多
By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known ...By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code.The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson's algorithm, the one proposed by Eyert needs fewer total iteration numbers.展开更多
The two-sided rank-one (TR1) update method was introduced by Griewank and Walther (2002) for solving nonlinear equations. It generates dense approximations of the Jacobian and thus is not applicable to large-scale spa...The two-sided rank-one (TR1) update method was introduced by Griewank and Walther (2002) for solving nonlinear equations. It generates dense approximations of the Jacobian and thus is not applicable to large-scale sparse problems. To overcome this difficulty, we propose sparse extensions of the TR1 update and give some convergence analysis. The numerical experiments show that some of our extensions are superior to the TR1 update method. Some convergence analysis is also presented.展开更多
In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton met...In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to unconstrained optimization. The theoretical analysis shows that local convergence can be induced under some suitable conditions. In the end, it is established an equivalent condition of superlinear convergence.展开更多
In this paper we discuss the convergence of the Broyden algorithms withoutconvexity and exact line search assumptions. We proved that if the objective function issuitably smooth and the algorithm produces a convergent...In this paper we discuss the convergence of the Broyden algorithms withoutconvexity and exact line search assumptions. We proved that if the objective function issuitably smooth and the algorithm produces a convergent point sequence, then the limitpoint of the sequence is a critical point of the objective function.展开更多
Generalized Broyden’s class methods Presented by this paper is a new class Newton-like method. The global and superlinear convergence Of the method with inexact and exact line search are proved, when applied to a uni...Generalized Broyden’s class methods Presented by this paper is a new class Newton-like method. The global and superlinear convergence Of the method with inexact and exact line search are proved, when applied to a uniformly convex objection function.展开更多
In this paper, a Gauss-Newton-based Broyden’s class method for parameters of regression problems is presented. The global convergence of this given method will be established under suitable conditions. Numerical resu...In this paper, a Gauss-Newton-based Broyden’s class method for parameters of regression problems is presented. The global convergence of this given method will be established under suitable conditions. Numerical results show that the proposed method is interesting.展开更多
This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-t...This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.展开更多
In this paper,Haar collocation algorithmis developed for the solution of first-order ofHIV infection CD4^(+)T-Cells model.In this technique,the derivative in the nonlinear model is approximated by utilizing Haar funct...In this paper,Haar collocation algorithmis developed for the solution of first-order ofHIV infection CD4^(+)T-Cells model.In this technique,the derivative in the nonlinear model is approximated by utilizing Haar functions.The value of the unknown function is obtained by the process of integration.Error estimation is also discussed,which aims to reduce the error of numerical solutions.The numerical results show that the method is simply applicable.The results are compared with Runge-Kutta technique,Bessel collocation technique,LADM-Pade and Galerkin technique available in the literature.The results show that the Haar technique is easy,precise and effective.展开更多
基金supported by National Natural Science Foundation of China (No.60873032)National High Technology Research and Development Program of China (863 Program) (No.2008AA8041302)
文摘This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set's discernible matrix is proposed to identify and classify micro-targets. To avoid the complicated calibration for intrinsic parameters of camera, an improved Broyden's method is proposed to estimate the image Jacobian matrix which employs Chebyshev polynomial to construct a cost function to approximate the optimization value. Finally, a visual controller is designed for a robotic micromanipulation system. The experiment results of micro-parts assembly show that the proposed methods and algorithms are effective and feasible.
文摘The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions is addressed and an effective numerical scheme is adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to find that the slip increases the momentum and thermal boundary layer thickness. As the slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid. The presence of a magnetic field has also substantial effects on velocity and temperature fields.
文摘This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for
基金Partly supported by the National Natural Sciences Foundation of China (No. 19731001)National 973 Information Technology and High-Performance Software Program of China (No.G1998030401)K.C.Wong Education Foundation, Hong Kong.
文摘Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under the convexity assumption on objective function, the global convergence of the Broyden's class is proved.
文摘In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.
文摘Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. The approach is capable of reconstructing the quantitative optical parameters (absorption coefficient and scattering coefficient) of a soft tissue. The motivation for reconstructing the optical property variation is that it and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and in contrast with noisy measurements. The parameter recovery known as inverse problem in highly scattering biological tissues is a nonlinear and ill-posed problem and is generally solved through iterative methods. The algorithm uses a forward model to arrive at a prediction flux density at the tissue boundary. The forward model uses light transport models such as stochastic Monte Carlo simulation or deterministic methods such as radioactive transfer equation (RTE) or a simplified version of RTE namely the diffusion equation (DE). The finite element method (FEM) is used for discretizing the diffusion equation. The frequently used algorithm for solving the inverse problem is Newton-based Model based Iterative Image Reconstruction (N-MoBIIR). Many Variants of Gauss-Newton approaches are proposed for DOT reconstruction. The focuses of such developments are 1) to reduce the computational complexity;2) to improve spatial recovery;and 3) to improve contrast recovery. These algorithms are 1) Hessian based MoBIIR;2) Broyden-based MoBIIR;3) adjoint Broyden-based MoBIIR;and 4) pseudo-dynamic approaches.
文摘In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we from some numerical results, discuss how to choose the number m to determine the approximating matrix properly in practical use.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176080)
文摘By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code.The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson's algorithm, the one proposed by Eyert needs fewer total iteration numbers.
基金supported by National Natural Science Foundation of China (Grant Nos. 10571171, 10831006)Chinese Academy of Sciences Knowledge Innovation Grant (Grant No. kjcx-yws7-03)
文摘The two-sided rank-one (TR1) update method was introduced by Griewank and Walther (2002) for solving nonlinear equations. It generates dense approximations of the Jacobian and thus is not applicable to large-scale sparse problems. To overcome this difficulty, we propose sparse extensions of the TR1 update and give some convergence analysis. The numerical experiments show that some of our extensions are superior to the TR1 update method. Some convergence analysis is also presented.
文摘In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to unconstrained optimization. The theoretical analysis shows that local convergence can be induced under some suitable conditions. In the end, it is established an equivalent condition of superlinear convergence.
文摘In this paper we discuss the convergence of the Broyden algorithms withoutconvexity and exact line search assumptions. We proved that if the objective function issuitably smooth and the algorithm produces a convergent point sequence, then the limitpoint of the sequence is a critical point of the objective function.
文摘Generalized Broyden’s class methods Presented by this paper is a new class Newton-like method. The global and superlinear convergence Of the method with inexact and exact line search are proved, when applied to a uniformly convex objection function.
文摘In this paper, a Gauss-Newton-based Broyden’s class method for parameters of regression problems is presented. The global convergence of this given method will be established under suitable conditions. Numerical results show that the proposed method is interesting.
文摘This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.
文摘In this paper,Haar collocation algorithmis developed for the solution of first-order ofHIV infection CD4^(+)T-Cells model.In this technique,the derivative in the nonlinear model is approximated by utilizing Haar functions.The value of the unknown function is obtained by the process of integration.Error estimation is also discussed,which aims to reduce the error of numerical solutions.The numerical results show that the method is simply applicable.The results are compared with Runge-Kutta technique,Bessel collocation technique,LADM-Pade and Galerkin technique available in the literature.The results show that the Haar technique is easy,precise and effective.