At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of th...At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of this journal by Shanmugam, 2016). Even if one betieves that earthquakes are the true triggering mechanism of SSDS in a given case, the story is stiff incomptete. This is because earthquakes (seismic shocks) are induced by a variety of causes: 1) glbaltectonics and associated faults (i.e., midocean ridges, trenches, and transform fautts); 2) meteorite-impact events; 3) volcanic eruptions; 4) post-gtacialuplift; 5) tsunami impact; 6 cyclonic impact; 7) landslides (mass-transport deposits); 8) tidal activity; 9) sea-tevet rise; 10) erosion; and 11) fluid pumping. These different causes are important for devetoping SSDS. Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositionaL, sedimentary-collapse). Atthough different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias) from the other types (e.g., fault, volcanic, and sedimentary breccias) has important imptications. 1) Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc.), whereas sedimentary- depositional breccias (e.g., debrites) do not. 2) Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. 3) Meteorite, volcanic, and fault breccias are invariabty subjected to diagenesis and hydrothermat mineratization with attered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltere展开更多
The Duocaima carbonate-hosted Pb-Zn deposit is a newly found large deposit in the southern area of Qinghai Province.In this paper, the characteristics, genesis, significance to Pb-Zn mineralization of the widely devel...The Duocaima carbonate-hosted Pb-Zn deposit is a newly found large deposit in the southern area of Qinghai Province.In this paper, the characteristics, genesis, significance to Pb-Zn mineralization of the widely developed breccias, and the ore-forming process have been carefully studied based on geological documentation of drilling holes, microscopic observations of petrography and microstructure and some stable isotope measurements.Based on the compositions of the clast and matrix, the breccias can be classified into three types: limestone clasts cemented by marl; limestone clasts with fine-grained calcareous materials; and limestone clasts cemented by hydrothermal calcite.The mineralization in the first type of breccia is weak, whereas it is strong in the latter two types of breccias.According to the locations of occurrence and structural characteristics of the breccias along with the relationship between the breccias and mineralization, part of the limestone clasts that are cemented by marl and outcrop in the contact zone between the Wudaoliang Formation(Nw) and the underlying Jiushidaoban Formation(Pj) are attributed to synsedimentary fault-genetic breccia, whereas the last of the limestone clasts that are cemented by marl and developed in the Jiushidaoban Formation(Pj) are attributed to the breccia generated by karst cave collapse; the limestone clasts with fine-grained calcareous materials and the limestone clasts cemented by hydrothermal calcite are attributed to breccia formed by hydrothermal dissolution.The breccia formed by karst collapse had consistently evolved for a long period of time, while the breccias with other origins were formed around the period of mineralization(i.e., about or slightly later than 20–16 Ma).The breccia generated by karst cave collapse and hydrothermal dissolution are somewhat related; the formation of the breccia from karst cave collapse provided open space for the later mineralization and reaction between hydrothermal fluids and host rocks, and the subseq展开更多
MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typica...MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.展开更多
Organic-inorganic interactions occurring in petroleum-related mud volcanoes can help predict the chemical processes that are responsible for methane emissions to the atmosphere. Seven samples of mud breccia directly e...Organic-inorganic interactions occurring in petroleum-related mud volcanoes can help predict the chemical processes that are responsible for methane emissions to the atmosphere. Seven samples of mud breccia directly ejected from one crater were collected in the Dushanzi mud volcano, along with one argillite sample of the original reddish host rocks distal from the crater, for comparison purposes. The mineral and chemical compositions as well as iron species of all samples were determined using XRD, XRF and M?ssbauer spectroscopy, respectively. The results indicate that a series of marked reactions occurred in the mud volcano systems, more specifically in the mud breccia when compared to the original rocks. Changes mainly included:(1) some conversion of clay minerals from smectite into chlorite and illite, and the precipitation of secondary carbonate minerals such as calcite and siderite;(2) silicon depletion and significant elemental enrichment of iron, manganese, magnesium, calcium and phosphorus; and(3) transformation of iron from ferric species in hematite and smectite into ferrous species in siderite, chlorite and illite. These geochemical reactions likely induced the color changes of the original reddish Neogene argillite to the gray or black mud breccia, as a result of reduction of elements and/or alteration of minerals associated with the oxidation of hydrocarbons. Our results also suggest that greenhouse gases emitted from the mud volcanoes are lowered through a series of methane oxidation reactions and carbon fixation(i.e., through carbonate precipitation).展开更多
Isli and Tislit, the Moroccan “Romeo and Juliette” according to a popular legend gave their name to a twin lakes in Imilchil. There we show evidences that these two lakes are impact craters. The proof as follow: 1) ...Isli and Tislit, the Moroccan “Romeo and Juliette” according to a popular legend gave their name to a twin lakes in Imilchil. There we show evidences that these two lakes are impact craters. The proof as follow: 1) the fragments of iron meteorites found on both sides of Isli and Tislit lakes belong to the same parent meteorite and siderite type;2) the sedimentary formations which are almost tabular in the area of the lakes become tilted with a centripetal sloping all around and towards Isli lake;3) the circular shape of the Tislit lake is similar to that of the Isli lake;4) the impact breccias found on the south of the Isli lake contain shocked quartz crystals;5) the radial fractures of high pressure affect some sedimentary beds. All these observations give evidence of the presence of an impact crater due to the fall of meteorites.展开更多
The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commo...The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commonly considered to have been affected by storms that broke up numerous limestone layers,but that was tectonically quiet.It is here argued,however,that some features of the formation-more in particular the many dozens of breccia layers and the occurrence of slid-down limestone blocks that are embedded in autochthonous oolites-can be explained satisfactorily only if some significant fault activity took place during its accumulation.The faulting may have been due to differential loading and subsidence,but an endogenic origin seems more probable.This implies that the structural history of the study area in Shandong Province may need re-consideration.展开更多
Collapse is a common geomorphic process in karst areas,especially on the Yunnan-Guizhou Plateau,which has a tectonic background of integral uplift.The frequent occurrence of collapse processes in karst underground cav...Collapse is a common geomorphic process in karst areas,especially on the Yunnan-Guizhou Plateau,which has a tectonic background of integral uplift.The frequent occurrence of collapse processes in karst underground caves and canyons indicates that collapses play an important role in the formation of canyons.Through an analysis of the morphology of a semicircular cliff in the Huajiang Grand Canyon and an investigation of sediments at the bottom of the cliff,a large-scale collapse event was found to have occurred.U-series dating of secondary calcium carbonate cement in the collapse breccias indicates that collapse processes occurred approximately 200 ka.According to the geomorphological evolution of the Huajiang Grand Canyon,the following geomorphic evolutionary process is proposed:underground river-cave hall-collapse of a tiankeng-tiankeng degradation-canyon formation.These findings also show that the dating of collapsed breccia cement can be effectively used to determine the development times of karst canyons and the formation ages of tiankengs.展开更多
Zhuojiazhuang gold deposit (ZGD) is the most enriched breccia pipe type gold deposit in East China, resulted from cryptoexplosion related to alkalinic magmatism and orebearing fluid filling. The ZGD is a small-sized m...Zhuojiazhuang gold deposit (ZGD) is the most enriched breccia pipe type gold deposit in East China, resulted from cryptoexplosion related to alkalinic magmatism and orebearing fluid filling. The ZGD is a small-sized mine with over 5 tons of gold reserves and grade of 156g/t in average and the highest 2 728 g/t as known. In addition, tellurium and silver are also valuable.The mineralized breccia pipe is cylinder-like in shape with 15 m long and 10 m wide and controlled by intersection ofNW and EW trend faults. Mining level has reached 170 m below the surface, but the whole pipe mineralization is still stable. Mineralization commonly occurs within the cements of breccias. Gold ores consist of hydrothermal breccia ore, shatteredbreccia ore and cataclastic ore. From the center of the ore body outwards, there is the transition from hydrothermal breccia toshattered breccia and then to cataclastic ores. According to composition and amount of the cements, the hydrothermal brecciaores can further be divided into three subtypes: sulfides cemented, hydrothermal mineral cemented and magma cemented.The content of gold is closely related to the types of the cements. The grade of the sulfide cemented breccia is the highestone, usually more than 1 000 g/t, and the known maximum grade is 2 728 g/t. The composition of the shattered breccia ismainly dioritic porphyrite and cemented by hydrothermal minerals, the grade ranges from ten to several tens g/t. The catsclastic ores are mainly composed of dioritic porphyrite, syenitic porphyry, as well as carbonate with mineralized veins, and the grade is only 35 g/t.Major ore minerals consist of pyrite, native tellurium, sphalerite, with minor calaverite, galena and altaite. Gangueminerals are composed of microcrystalline quartz, decktite and fluorite, with minor sericite and calcite. Brecciated and disseminited structures are main structures of ores. Four ore-forming stages are defined: microcrystalline quartz-pyrite stage,microcrystalline quartz-polymetal sulfides stage, quartz-adular st展开更多
文摘At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of this journal by Shanmugam, 2016). Even if one betieves that earthquakes are the true triggering mechanism of SSDS in a given case, the story is stiff incomptete. This is because earthquakes (seismic shocks) are induced by a variety of causes: 1) glbaltectonics and associated faults (i.e., midocean ridges, trenches, and transform fautts); 2) meteorite-impact events; 3) volcanic eruptions; 4) post-gtacialuplift; 5) tsunami impact; 6 cyclonic impact; 7) landslides (mass-transport deposits); 8) tidal activity; 9) sea-tevet rise; 10) erosion; and 11) fluid pumping. These different causes are important for devetoping SSDS. Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositionaL, sedimentary-collapse). Atthough different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias) from the other types (e.g., fault, volcanic, and sedimentary breccias) has important imptications. 1) Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc.), whereas sedimentary- depositional breccias (e.g., debrites) do not. 2) Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. 3) Meteorite, volcanic, and fault breccias are invariabty subjected to diagenesis and hydrothermat mineratization with attered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltere
基金funded by National Nature Science Foundation of China (41273050, 41320104004)National Key Technology R&D Program in the 11th Five year Plan of China (No.2006 BAB01A08)the Geological Survey Project of China (12120114010301, 1212011220908)
文摘The Duocaima carbonate-hosted Pb-Zn deposit is a newly found large deposit in the southern area of Qinghai Province.In this paper, the characteristics, genesis, significance to Pb-Zn mineralization of the widely developed breccias, and the ore-forming process have been carefully studied based on geological documentation of drilling holes, microscopic observations of petrography and microstructure and some stable isotope measurements.Based on the compositions of the clast and matrix, the breccias can be classified into three types: limestone clasts cemented by marl; limestone clasts with fine-grained calcareous materials; and limestone clasts cemented by hydrothermal calcite.The mineralization in the first type of breccia is weak, whereas it is strong in the latter two types of breccias.According to the locations of occurrence and structural characteristics of the breccias along with the relationship between the breccias and mineralization, part of the limestone clasts that are cemented by marl and outcrop in the contact zone between the Wudaoliang Formation(Nw) and the underlying Jiushidaoban Formation(Pj) are attributed to synsedimentary fault-genetic breccia, whereas the last of the limestone clasts that are cemented by marl and developed in the Jiushidaoban Formation(Pj) are attributed to the breccia generated by karst cave collapse; the limestone clasts with fine-grained calcareous materials and the limestone clasts cemented by hydrothermal calcite are attributed to breccia formed by hydrothermal dissolution.The breccia formed by karst collapse had consistently evolved for a long period of time, while the breccias with other origins were formed around the period of mineralization(i.e., about or slightly later than 20–16 Ma).The breccia generated by karst cave collapse and hydrothermal dissolution are somewhat related; the formation of the breccia from karst cave collapse provided open space for the later mineralization and reaction between hydrothermal fluids and host rocks, and the subseq
基金was supported by the Natural Science Foundation of China(Grant no.41173077)the Director Fund of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Grant no.13-A-01-02)
文摘MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.
基金partially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05007001-004)the National Natural Science Foundation of China(41273112+3 种基金414021294102012400241402298)CAS"Light of West China"Program and Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2015VEA032)
文摘Organic-inorganic interactions occurring in petroleum-related mud volcanoes can help predict the chemical processes that are responsible for methane emissions to the atmosphere. Seven samples of mud breccia directly ejected from one crater were collected in the Dushanzi mud volcano, along with one argillite sample of the original reddish host rocks distal from the crater, for comparison purposes. The mineral and chemical compositions as well as iron species of all samples were determined using XRD, XRF and M?ssbauer spectroscopy, respectively. The results indicate that a series of marked reactions occurred in the mud volcano systems, more specifically in the mud breccia when compared to the original rocks. Changes mainly included:(1) some conversion of clay minerals from smectite into chlorite and illite, and the precipitation of secondary carbonate minerals such as calcite and siderite;(2) silicon depletion and significant elemental enrichment of iron, manganese, magnesium, calcium and phosphorus; and(3) transformation of iron from ferric species in hematite and smectite into ferrous species in siderite, chlorite and illite. These geochemical reactions likely induced the color changes of the original reddish Neogene argillite to the gray or black mud breccia, as a result of reduction of elements and/or alteration of minerals associated with the oxidation of hydrocarbons. Our results also suggest that greenhouse gases emitted from the mud volcanoes are lowered through a series of methane oxidation reactions and carbon fixation(i.e., through carbonate precipitation).
文摘Isli and Tislit, the Moroccan “Romeo and Juliette” according to a popular legend gave their name to a twin lakes in Imilchil. There we show evidences that these two lakes are impact craters. The proof as follow: 1) the fragments of iron meteorites found on both sides of Isli and Tislit lakes belong to the same parent meteorite and siderite type;2) the sedimentary formations which are almost tabular in the area of the lakes become tilted with a centripetal sloping all around and towards Isli lake;3) the circular shape of the Tislit lake is similar to that of the Isli lake;4) the impact breccias found on the south of the Isli lake contain shocked quartz crystals;5) the radial fractures of high pressure affect some sedimentary beds. All these observations give evidence of the presence of an impact crater due to the fall of meteorites.
基金the China-Association of Southeast Asian Nations(ASEAN)Maritime Cooperation Fund(grant No.12120100500017001)the China National Natural Science Foundation Project(grant No.41672120)the Shandong University of Science and Technology(SDUST)Research Fund(grant No.2015TDJH101)for their financial support。
文摘The Late Cambrian(Furongian)Chaomidian Formation accumulated in an epeiric sea that covered a large part of the North China Plate and extended from China to Korea.The depositional environment of the formation is commonly considered to have been affected by storms that broke up numerous limestone layers,but that was tectonically quiet.It is here argued,however,that some features of the formation-more in particular the many dozens of breccia layers and the occurrence of slid-down limestone blocks that are embedded in autochthonous oolites-can be explained satisfactorily only if some significant fault activity took place during its accumulation.The faulting may have been due to differential loading and subsidence,but an endogenic origin seems more probable.This implies that the structural history of the study area in Shandong Province may need re-consideration.
基金funded by the National Natural Science Foundation of China(Grant Nos:42061001,41501006)The Science and Technology Foundation of Guizhou Province(Grant Nos:Qianke Jichu-ZK[2021]190)Natural science research funding project of Guizhou Provincial Department of Education(Grant No.:Qian Jiao KY[2021]036).
文摘Collapse is a common geomorphic process in karst areas,especially on the Yunnan-Guizhou Plateau,which has a tectonic background of integral uplift.The frequent occurrence of collapse processes in karst underground caves and canyons indicates that collapses play an important role in the formation of canyons.Through an analysis of the morphology of a semicircular cliff in the Huajiang Grand Canyon and an investigation of sediments at the bottom of the cliff,a large-scale collapse event was found to have occurred.U-series dating of secondary calcium carbonate cement in the collapse breccias indicates that collapse processes occurred approximately 200 ka.According to the geomorphological evolution of the Huajiang Grand Canyon,the following geomorphic evolutionary process is proposed:underground river-cave hall-collapse of a tiankeng-tiankeng degradation-canyon formation.These findings also show that the dating of collapsed breccia cement can be effectively used to determine the development times of karst canyons and the formation ages of tiankengs.
文摘Zhuojiazhuang gold deposit (ZGD) is the most enriched breccia pipe type gold deposit in East China, resulted from cryptoexplosion related to alkalinic magmatism and orebearing fluid filling. The ZGD is a small-sized mine with over 5 tons of gold reserves and grade of 156g/t in average and the highest 2 728 g/t as known. In addition, tellurium and silver are also valuable.The mineralized breccia pipe is cylinder-like in shape with 15 m long and 10 m wide and controlled by intersection ofNW and EW trend faults. Mining level has reached 170 m below the surface, but the whole pipe mineralization is still stable. Mineralization commonly occurs within the cements of breccias. Gold ores consist of hydrothermal breccia ore, shatteredbreccia ore and cataclastic ore. From the center of the ore body outwards, there is the transition from hydrothermal breccia toshattered breccia and then to cataclastic ores. According to composition and amount of the cements, the hydrothermal brecciaores can further be divided into three subtypes: sulfides cemented, hydrothermal mineral cemented and magma cemented.The content of gold is closely related to the types of the cements. The grade of the sulfide cemented breccia is the highestone, usually more than 1 000 g/t, and the known maximum grade is 2 728 g/t. The composition of the shattered breccia ismainly dioritic porphyrite and cemented by hydrothermal minerals, the grade ranges from ten to several tens g/t. The catsclastic ores are mainly composed of dioritic porphyrite, syenitic porphyry, as well as carbonate with mineralized veins, and the grade is only 35 g/t.Major ore minerals consist of pyrite, native tellurium, sphalerite, with minor calaverite, galena and altaite. Gangueminerals are composed of microcrystalline quartz, decktite and fluorite, with minor sericite and calcite. Brecciated and disseminited structures are main structures of ores. Four ore-forming stages are defined: microcrystalline quartz-pyrite stage,microcrystalline quartz-polymetal sulfides stage, quartz-adular st