大型燃煤电站锅炉在进行烟气脱硝时会产生较高的运行成本,建立有效的脱硝成本预测模型是对其进行经济性优化的基础。从某660MW火电机组的厂级监控信息系统(supervisory information system,SIS)选取历史运行数据,将BP神经网络算法与最...大型燃煤电站锅炉在进行烟气脱硝时会产生较高的运行成本,建立有效的脱硝成本预测模型是对其进行经济性优化的基础。从某660MW火电机组的厂级监控信息系统(supervisory information system,SIS)选取历史运行数据,将BP神经网络算法与最小二乘支持向量机(least squares support vector machine,LSSVM)结合,利用BP网络算法对输入变量进行选择以降低模型的维数与复杂度,将筛选出来的变量作为LSSVM模型的输入,建立了脱硝成本预测的BP-LSSVM模型。将该模型与单纯的LSSVM模型进行对比,结果表明通过神经网络变量选择,能有效降低模型的复杂度,提高模型的泛化能力,从而实现火电机组脱硝成本精确快速地预测。展开更多
文摘大型燃煤电站锅炉在进行烟气脱硝时会产生较高的运行成本,建立有效的脱硝成本预测模型是对其进行经济性优化的基础。从某660MW火电机组的厂级监控信息系统(supervisory information system,SIS)选取历史运行数据,将BP神经网络算法与最小二乘支持向量机(least squares support vector machine,LSSVM)结合,利用BP网络算法对输入变量进行选择以降低模型的维数与复杂度,将筛选出来的变量作为LSSVM模型的输入,建立了脱硝成本预测的BP-LSSVM模型。将该模型与单纯的LSSVM模型进行对比,结果表明通过神经网络变量选择,能有效降低模型的复杂度,提高模型的泛化能力,从而实现火电机组脱硝成本精确快速地预测。