A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using ...A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.展开更多
Stability for the manifolds of equilibrium states of a generalized Birkhoff system is studied. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to the general...Stability for the manifolds of equilibrium states of a generalized Birkhoff system is studied. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to the generalized BirkhoiYian system and two propositions on the stability of the manifolds of equilibrium states of the system are obtained. An example is given to illustrate the application of the results.展开更多
In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff E...In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.展开更多
In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff...In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff equations are established, and the definition of the integrating factors for the system is given. Secondly, based on the concept of integrating factors, the conservation theorems and their inverse for the generalized Birkhoff system in the event space are presented in detail, and the relation between the conservation laws and the integrating factors of the system is obtained and the generalized Killing equations for the determination of the integrating factors are given. Finally, an example is given to illustrate the application of the results.展开更多
In this paper, the stability with respect to partial variables for the Birkhoff system is studied. By transplanting the results of the partial stability for general systems to the Birkhoff system and constructing a su...In this paper, the stability with respect to partial variables for the Birkhoff system is studied. By transplanting the results of the partial stability for general systems to the Birkhoff system and constructing a suitable Liapunov function, the partial stability of the system can be achieved. Finally, two examples are given to illustrate the application of the results.展开更多
The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of ma...The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.展开更多
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
A mechanical system whose motion or a physical system whose state is described by the Birkhoff equations is called Birkhoff system. The Birkhoff system is more general than the Hamilton system and has a series of impo...A mechanical system whose motion or a physical system whose state is described by the Birkhoff equations is called Birkhoff system. The Birkhoff system is more general than the Hamilton system and has a series of important properties. Therefore, the study of the Birkhoff system becomes a direction of modem developments for mathematical physics science, especially for analytical dynamics.展开更多
This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function...This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.展开更多
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n...This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.展开更多
The perturbation of symmetries of the free Birkhoff system under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of adiabatic invariants and the conditions for t...The perturbation of symmetries of the free Birkhoff system under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of adiabatic invariants and the conditions for their existence are given. Then these results are generalized to the constrained Birkhoff system. One example is presented to illustrate these results.展开更多
Studies the stability for them manifold of equilibrium state of the autonomous Birkhoffsystem. Uses the Liapunov's direct method and the first approximation method to obtain thestability criterion for the manifold...Studies the stability for them manifold of equilibrium state of the autonomous Birkhoffsystem. Uses the Liapunov's direct method and the first approximation method to obtain thestability criterion for the manifold of equilibrium state of the system. Gives an example toillustrate the application of the result.展开更多
For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon'...For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.展开更多
In this paper, we have obtained an expression of the bivariate Vandermonde determinant for the Elliptic Type Node Configuration in R-2, and discussed the possibility of the corresponding multivariate Lagrange, Hermite...In this paper, we have obtained an expression of the bivariate Vandermonde determinant for the Elliptic Type Node Configuration in R-2, and discussed the possibility of the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation.展开更多
Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagra...Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.展开更多
Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkho...Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.展开更多
To study the Poisson theory of the generalized Birkhoff systems, the Lie algebra and the Poisson brackets were used to establish the Poisson theorem. The generalized Poisson condition for the first integral and the ge...To study the Poisson theory of the generalized Birkhoff systems, the Lie algebra and the Poisson brackets were used to establish the Poisson theorem. The generalized Poisson condition for the first integral and the generalized Poisson theorem of the generalized Birkhoff systems are obtained. An example is given to illustrate the application of the result.展开更多
In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t nea...In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u=0 and σ is a positive constant. It is proved that for any fixed σ>0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.展开更多
This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal mono...This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040007022).
文摘A symmetry and a conserved quantity of the Birkhoff system are studied. The symmetry is called the Birkhoff symmetry. Its definition and criterion are given in this paper. A conserved quantity can be deduced by using the symmetry. An example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10772025,10932002 and 10972127)the Natural Science Foundation of Henan Province,China(Grant No.102300410144)the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics,China
文摘Stability for the manifolds of equilibrium states of a generalized Birkhoff system is studied. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to the generalized BirkhoiYian system and two propositions on the stability of the manifolds of equilibrium states of the system are obtained. An example is given to illustrate the application of the results.
基金the National Natural Science Foundation of China(10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education,China(20040007022)
文摘In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.
基金supported by National Natural Science Foundation of China under Grant No. 10572021
文摘In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff equations are established, and the definition of the integrating factors for the system is given. Secondly, based on the concept of integrating factors, the conservation theorems and their inverse for the generalized Birkhoff system in the event space are presented in detail, and the relation between the conservation laws and the integrating factors of the system is obtained and the generalized Killing equations for the determination of the integrating factors are given. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Doctoral Program Foun dation of Institution of Higher Education, China (Grant No 20040007022).
文摘In this paper, the stability with respect to partial variables for the Birkhoff system is studied. By transplanting the results of the partial stability for general systems to the Birkhoff system and constructing a suitable Liapunov function, the partial stability of the system can be achieved. Finally, two examples are given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872084 and 10932002)the Research Program of Higher Education of Liaoning Province,China (Grant No. 2008S098)+3 种基金the Program of Supporting Elitists of Higher Education of Liaoning Province,China (Grant No. 2008RC20)the Program of Constructing Liaoning Provincial Key Laboratory,China (Grant No. 2008403009)the Foundation Research Plan of Liaoning educational Bureau,China (Grant No. L2010147)the Youth fund of Liaoning University,China (Grant No. 2008LDQN04)
文摘The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China.
文摘A mechanical system whose motion or a physical system whose state is described by the Birkhoff equations is called Birkhoff system. The Birkhoff system is more general than the Hamilton system and has a series of important properties. Therefore, the study of the Birkhoff system becomes a direction of modem developments for mathematical physics science, especially for analytical dynamics.
基金supported by National Natural Science Foundation of China(11871006,11671271)。
文摘This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.
基金The project supported by the National Natural Science Foundation(19972010)the Doctoral Program Foundation of Institution of Higher Education of Chinathe Natural Science Foundation of Henan Province
文摘The perturbation of symmetries of the free Birkhoff system under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of adiabatic invariants and the conditions for their existence are given. Then these results are generalized to the constrained Birkhoff system. One example is presented to illustrate these results.
文摘Studies the stability for them manifold of equilibrium state of the autonomous Birkhoffsystem. Uses the Liapunov's direct method and the first approximation method to obtain thestability criterion for the manifold of equilibrium state of the system. Gives an example toillustrate the application of the result.
文摘For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.
文摘In this paper, we have obtained an expression of the bivariate Vandermonde determinant for the Elliptic Type Node Configuration in R-2, and discussed the possibility of the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation.
基金supported by the National Natural Science Foundation of China (Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(No.KYLX15_0405)
文摘Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.
文摘Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.
文摘To study the Poisson theory of the generalized Birkhoff systems, the Lie algebra and the Poisson brackets were used to establish the Poisson theorem. The generalized Poisson condition for the first integral and the generalized Poisson theorem of the generalized Birkhoff systems are obtained. An example is given to illustrate the application of the result.
基金supported by National Natural Science Foundation of China (Grant Nos.10531050,10771098)the Major State Basic Research Development of China and the Natural Science Foundation of Jiangsu Province(Grant No.BK2007134)
文摘In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u=0 and σ is a positive constant. It is proved that for any fixed σ>0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.
基金supported by the National Natural Science Foundation of China under Grant No.11271156Science and Technology Development Plan of Jilin Province under Grant No.20130101179JCPublic Computing Platform in Jilin Province
文摘This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.