The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging ...The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging issues.Considering the rapid development of biochar materials,this review serves as a valuable platform to summarize the recent progress on the theoretical investigation and engineering applications of biochar materials in environmental remediation.For a better understanding of the structure-application relationships,the structural properties of biochar from macroscopic and microscopic aspects are summarized.The multilevel structures including elements,phases,surface chemistry,and molecular are highlighted to elucidate the multi-functional properties of biochars.Sorption,catalysis,redox reaction,and biological activity of biochar are briefly illustrated,which influence the transport,transformation,and removal of organic and inorganic pollutants in the environments.According to the multi-level structures and structure-application relationships of biochar,specific biochar-based materials and devices have been designed for practical environmental application.The important progress on the functionalization and device of biochar-based materials,including magnetic biochars,2D and 3D biochar-based macrostructures,immobilized microorganism on biochar,and biochar-amended biofilters are highlighted.The environmental friendliness and sustainability of biochar-based materials,considering the whole cycle from synthesis to application,are evaluated.展开更多
We investigated the effect of photodynamic therapy (PDT) with hematoporphyrin monomethyl ether (HMME) on the viability of Streptococcus mutans (S. mutans) cells on biofilms in vitro. Streptococcus mutans is the ...We investigated the effect of photodynamic therapy (PDT) with hematoporphyrin monomethyl ether (HMME) on the viability of Streptococcus mutans (S. mutans) cells on biofilms in vitro. Streptococcus mutans is the primary etiological agent of human dental caries. Since dental caries are localized infections, such plaque-related diseases would be well suited to PDT. The diode laser used in this study had the wavelength of 635 nm, whose output power was 10 mW and the energy density was 12.74 J/cm^2. HMME was used as photosensitizer. Samples were prepared and divided into five groups: (1) HMME; (2) Laser; (3) HMME+Laser; (4) Control group (+) with chlorhexidine; and (5) Control group (-) with sterile physiological saline. Inoculum of S. mutans incubated with HMME also examined with fluorescence microscopy. PDT exhibited a significantly (P 〈 0.05) increased antimicrobial potential compared with 20 μm/mL HMME only, laser only, 0.05% chlorhexidine, and 0.9% sterile physiological saline, which reduced the S. mutans of the biofilm most effectively. Laser and 0.05% chlorhexidine were caused reduction in the viable counts of S. mutans significantly different (P 〈 0.05) also, but these two test treatments did not statistically differ from each other. HMME group did not statistically differ with negative control group. Fluorescence microscopy indicated that HMME localized primarily in the S. mutans of the biofilm. It was demonstrated that HMME-mediated PDT was efficient at killing S. mutans of biofilms and a useful approach in the treatment of dental plaque-related diseases.展开更多
An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicat...An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.展开更多
In this paper, the inhibition of methanogens by phenol in coal gasification wastewater(CGW)was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor(AF). The anaerobic toxicity ...In this paper, the inhibition of methanogens by phenol in coal gasification wastewater(CGW)was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor(AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280 mg/L could maintain the methanogenic activity. In the AF treating CGW,the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand(COD) and total phenol reached1200 and 100 mg/L, respectively, and the methane production rate was 175 m L CH4/g COD/day.However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200–250 mg/L. The extracellular polymeric substances(EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages.展开更多
Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat...Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat for the removal of hydrophobic α-pinene. When inoculated with two pure degraders and adapted activated sludge, a removal efficiency (RE) of more than 95% was achieved after a start- up period of 11 days. The maximum elimination capacity (EC) of 50 g/(m^3.hr) with RE of 94% was obtained at empty bed retention time (EBRT) of 102 sec. When higher α-pinene concentrations and shorter EBRTs were applied, the REs and ECs decreased significantly due to mass-transfer and biological reaction limitations. As deduced from the experimental results, approximately 74% of ct-pinene were completely mineralized by the consortiums and the biomass yield was 0.60 g biomass/g α-pinene. Sequence analysis of the selected bands excised from denaturing gradient gel electrophoresis revealed that the inoculated pure cultures could be present during the whole operation, and others were closely related to bacteria being able to degrade hydrocarbons. The kinetic results demonstrated that the whole biofiltration for α-pinene was diffusion-limit controlled owing to its hydrophobic characteristics. These findings indicated that this bacterial biofiltration is a promising technology for the remediation of hydrophobic industrial waste gases containing ct-pinene.展开更多
基金This project was supported by the National Natural Science Foundations of China(21621005,and 21537005,21425730)the National Key Technology Research and Development Program of China(2018YFC1800705).
文摘The development of biochar has triggered a hot-spot in various research fields including agriculture,energy,environment,and materials.Biochar-based materials provide a novel approach against environmental challenging issues.Considering the rapid development of biochar materials,this review serves as a valuable platform to summarize the recent progress on the theoretical investigation and engineering applications of biochar materials in environmental remediation.For a better understanding of the structure-application relationships,the structural properties of biochar from macroscopic and microscopic aspects are summarized.The multilevel structures including elements,phases,surface chemistry,and molecular are highlighted to elucidate the multi-functional properties of biochars.Sorption,catalysis,redox reaction,and biological activity of biochar are briefly illustrated,which influence the transport,transformation,and removal of organic and inorganic pollutants in the environments.According to the multi-level structures and structure-application relationships of biochar,specific biochar-based materials and devices have been designed for practical environmental application.The important progress on the functionalization and device of biochar-based materials,including magnetic biochars,2D and 3D biochar-based macrostructures,immobilized microorganism on biochar,and biochar-amended biofilters are highlighted.The environmental friendliness and sustainability of biochar-based materials,considering the whole cycle from synthesis to application,are evaluated.
基金supported by the National Natural Science Foundation of China(No.60678047)the Science Foundation of Tianjin(No.05YFJZJC02300)
文摘We investigated the effect of photodynamic therapy (PDT) with hematoporphyrin monomethyl ether (HMME) on the viability of Streptococcus mutans (S. mutans) cells on biofilms in vitro. Streptococcus mutans is the primary etiological agent of human dental caries. Since dental caries are localized infections, such plaque-related diseases would be well suited to PDT. The diode laser used in this study had the wavelength of 635 nm, whose output power was 10 mW and the energy density was 12.74 J/cm^2. HMME was used as photosensitizer. Samples were prepared and divided into five groups: (1) HMME; (2) Laser; (3) HMME+Laser; (4) Control group (+) with chlorhexidine; and (5) Control group (-) with sterile physiological saline. Inoculum of S. mutans incubated with HMME also examined with fluorescence microscopy. PDT exhibited a significantly (P 〈 0.05) increased antimicrobial potential compared with 20 μm/mL HMME only, laser only, 0.05% chlorhexidine, and 0.9% sterile physiological saline, which reduced the S. mutans of the biofilm most effectively. Laser and 0.05% chlorhexidine were caused reduction in the viable counts of S. mutans significantly different (P 〈 0.05) also, but these two test treatments did not statistically differ from each other. HMME group did not statistically differ with negative control group. Fluorescence microscopy indicated that HMME localized primarily in the S. mutans of the biofilm. It was demonstrated that HMME-mediated PDT was efficient at killing S. mutans of biofilms and a useful approach in the treatment of dental plaque-related diseases.
文摘An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.
基金financially supported by the Talented Young Scientist Program supported by the Ministry of Science and Technology,P.R.China as an Assistant Researcher(IND-15-003)at the School of Environmental Science and Engineering,Shanghai Jiao Tong University,China
文摘In this paper, the inhibition of methanogens by phenol in coal gasification wastewater(CGW)was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor(AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280 mg/L could maintain the methanogenic activity. In the AF treating CGW,the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand(COD) and total phenol reached1200 and 100 mg/L, respectively, and the methane production rate was 175 m L CH4/g COD/day.However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200–250 mg/L. The extracellular polymeric substances(EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages.
基金sponsored by the National Natural Science Foundation of China (No. 51178431)the International S&T Cooperation Program of China (No.2011DFA92660)+1 种基金the Key Project of Science and Technology Department of Zhejiang Province (No. 2011C13023)the Zhejiang Provincial Funds for Distinguished Young Scientists (No. R509023)
文摘Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat for the removal of hydrophobic α-pinene. When inoculated with two pure degraders and adapted activated sludge, a removal efficiency (RE) of more than 95% was achieved after a start- up period of 11 days. The maximum elimination capacity (EC) of 50 g/(m^3.hr) with RE of 94% was obtained at empty bed retention time (EBRT) of 102 sec. When higher α-pinene concentrations and shorter EBRTs were applied, the REs and ECs decreased significantly due to mass-transfer and biological reaction limitations. As deduced from the experimental results, approximately 74% of ct-pinene were completely mineralized by the consortiums and the biomass yield was 0.60 g biomass/g α-pinene. Sequence analysis of the selected bands excised from denaturing gradient gel electrophoresis revealed that the inoculated pure cultures could be present during the whole operation, and others were closely related to bacteria being able to degrade hydrocarbons. The kinetic results demonstrated that the whole biofiltration for α-pinene was diffusion-limit controlled owing to its hydrophobic characteristics. These findings indicated that this bacterial biofiltration is a promising technology for the remediation of hydrophobic industrial waste gases containing ct-pinene.