期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5s的煤矸石目标检测算法 被引量:1
1
作者 高如新 常嘉浩 +1 位作者 杜亚博 刘群坡 《电子测量技术》 北大核心 2023年第13期95-101,共7页
针对工业场景下煤矸石分拣任务检测精度低、分拣速度慢的问题,提出一种基于改进YOLOv5s的煤矸石目标检测算法。在主干网络的卷积层中加入轻量化注意力机制CBAM,以提升目标在复杂的煤渣环境中的特征表达的能力;其次,改进特征融合层为BIFP... 针对工业场景下煤矸石分拣任务检测精度低、分拣速度慢的问题,提出一种基于改进YOLOv5s的煤矸石目标检测算法。在主干网络的卷积层中加入轻量化注意力机制CBAM,以提升目标在复杂的煤渣环境中的特征表达的能力;其次,改进特征融合层为BIFPN,BIFPN结构进行了双向跨尺度连接和加权融合,以加强煤矸石浅层的特征信息和高层煤矸石位置信息,解决煤矸石颜色、纹理相近难以分类的问题;最后,在原算法DIoU的基础上增加对边界框高宽比考虑,以提升检验框检测的准确率。在工业生产环境中采集的10000张煤矸石图像作为数据集对所提方法进行实验,实验表明,与改进前的YOLOv5s模型相比,在检测速度基本保持不变的前提下,改进算法平均精度mAP_0.5达到了93.3%,平均检测精度提高了5.1%,实现了对煤矸石进行目标检测的要求。 展开更多
关键词 煤矸目标检测 YOLOv5s CBAM bifpn特征融合 CIOU 煤矸分选
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部