针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句...针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。展开更多
文中研究了知识图谱中关于实体关系联合抽取方式,解决流水线抽取方式的误差传播、效率低下及关系重叠的问题,设计了网络安全本体模型,提出基于深度学习的Seq2Seq联合抽取模型,编码层通过BERT-WWM和双向长短期记忆网络(Bi-directional Lo...文中研究了知识图谱中关于实体关系联合抽取方式,解决流水线抽取方式的误差传播、效率低下及关系重叠的问题,设计了网络安全本体模型,提出基于深度学习的Seq2Seq联合抽取模型,编码层通过BERT-WWM和双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型获取上下文语义表示,并融合多头注意力机制突显文本中的重要单词,解码层通过指针网络输出序列标注,从而获取头实体、关系及尾实体。以自标注的数据集为语料,通过TensorFlow框架建模,对实体和关系抽取的质量进行评估。结果表明,模型的精确率、召回率和F1值均较高,验证了联合抽取模型的有效性,最后通过Neo4j图数据库构建并可视化知识图谱。展开更多
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It...Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.展开更多
文摘针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。
文摘文中研究了知识图谱中关于实体关系联合抽取方式,解决流水线抽取方式的误差传播、效率低下及关系重叠的问题,设计了网络安全本体模型,提出基于深度学习的Seq2Seq联合抽取模型,编码层通过BERT-WWM和双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型获取上下文语义表示,并融合多头注意力机制突显文本中的重要单词,解码层通过指针网络输出序列标注,从而获取头实体、关系及尾实体。以自标注的数据集为语料,通过TensorFlow框架建模,对实体和关系抽取的质量进行评估。结果表明,模型的精确率、召回率和F1值均较高,验证了联合抽取模型的有效性,最后通过Neo4j图数据库构建并可视化知识图谱。
文摘Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.