Poly(benzanthrone-co-thiophene), a new conducting copolymer, was successfully prepared by direct anodic oxidation of benzanthrone and thiophene (Th) in a binary solvent system containing boron trifluoride diethyl ...Poly(benzanthrone-co-thiophene), a new conducting copolymer, was successfully prepared by direct anodic oxidation of benzanthrone and thiophene (Th) in a binary solvent system containing boron trifluoride diethyl etherate (BFEE) and acetonitrile (ACN). The as-formed copolymer film electrodeposited with monomer feed ratio of benzanthrone/Th = 1:1 at the applied potential of 1.3 V versus Ag/AgCl exhibited the advantages of both polybenzanthrone and polythiophene, such as active electrochemical behavior, excellent thermal stability, relatively high electrical conductivity and mechanical properties. UV-Vis spectroscopy, 1H-NMR and SEM were used to characterize and investigate the structures and morphologies of the copolymers. Fluorescence spectroscopy studies revealed that the obtained copolymer films show strong emission at about 525 nm. Moreover, the emitting properties of the copolymers could be tuned by changing some parameters during the electropolymerization process, such as monomer feed ratio.展开更多
基金supported by the NSFC(Nos.50663001,50963002)the Key Scientific Project from Ministry of Education,Jiangxi Province Jinggang Star Project(2008)Jiangxi Provincial Department of Education(GJJ08369 and GJJ09574).
文摘Poly(benzanthrone-co-thiophene), a new conducting copolymer, was successfully prepared by direct anodic oxidation of benzanthrone and thiophene (Th) in a binary solvent system containing boron trifluoride diethyl etherate (BFEE) and acetonitrile (ACN). The as-formed copolymer film electrodeposited with monomer feed ratio of benzanthrone/Th = 1:1 at the applied potential of 1.3 V versus Ag/AgCl exhibited the advantages of both polybenzanthrone and polythiophene, such as active electrochemical behavior, excellent thermal stability, relatively high electrical conductivity and mechanical properties. UV-Vis spectroscopy, 1H-NMR and SEM were used to characterize and investigate the structures and morphologies of the copolymers. Fluorescence spectroscopy studies revealed that the obtained copolymer films show strong emission at about 525 nm. Moreover, the emitting properties of the copolymers could be tuned by changing some parameters during the electropolymerization process, such as monomer feed ratio.