The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based o...The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used.展开更多
目前,北斗三号卫星导航系统(BDS-3)新增了互操作信号B1C和B2a,为保障BDS-3的定位精度,有必要对新信号的观测数据进行全面分析。文章选取2020年4月1日至10日共10 d 19个iGMAS跟踪站的观测数据,从数据完整率、信噪比、多路径效应、电离层...目前,北斗三号卫星导航系统(BDS-3)新增了互操作信号B1C和B2a,为保障BDS-3的定位精度,有必要对新信号的观测数据进行全面分析。文章选取2020年4月1日至10日共10 d 19个iGMAS跟踪站的观测数据,从数据完整率、信噪比、多路径效应、电离层延迟变化率等4个方面进行评价,并与GPS L1/L5和Galileo E1/E5a对比,对9颗BDS-3中圆地球轨道(Medium Earth Orbit,MEO)卫星的观测数据进行评估。结果表明:B2a在数据完整率、信噪比、多路径效应方面略优于B1C,但差距不大,B1C在抑制电离层延迟变化率方面优于B2a;BDS-3的B1C/B2a与GPS、Galileo的兼容频率基本处于同一水平,在信噪比、电离层延迟变化率等方面甚至优于L1/L5、E1/E5a。展开更多
To provide competitive global positioning and timing services under the condition that monitoring stations are confined to Chinese territory,inter-satellite link(ISL)technology is used by the third-generation BeiDou N...To provide competitive global positioning and timing services under the condition that monitoring stations are confined to Chinese territory,inter-satellite link(ISL)technology is used by the third-generation BeiDou Navigation Satellite System(BDS-3).The ISL,together with the dual one-way links between satellites and anchor stations,may enable autonomous navigation for BDS-3.In this paper,we propose a general observation model for orbit determination(OD)and time synchronization(TS)directly using non-simultaneous observations,such as raw ISL pseudoranges.With the proposed model,satellite orbits,clocks,and hardware delay biases of ISL equipment can be determined simultaneously by jointly processing inter-satellite one-way pseudorange data and observation data from ground monitoring stations.Moreover,autonomous OD and TS are also achievable with one-way pseudorange data from anchor stations and satellites.Data from eight BDS-3 satellites,two anchor stations,and seven monitoring stations located in China were collected to validate the proposed method.It is shown that by jointly processing data from the ISL and seven monitoring stations,the RMS of overlap orbit differences in radial direction is 0.019 m,the overlap clock difference(95%)is 0.185 ns,and the stability of the estimated hardware delay biases for each satellite is greater than 0.5 ns.Compared with the results obtained with the seven stations,the improvements of orbits in radial direction and clocks are 95.7%and 90.5%,respectively.When the hardware delay biases are fixed to predetermined values,the accuracies of orbits and clocks are further improved.By jointly processing pseudoranges from the satellites and the two anchor stations,the RMS of overlap orbit differences is 0.017 m in the radial direction,and the overlap clock difference(95%)is 0.037 ns.It has also been demonstrated that under the condition of one-way ranging links,the accuracies of orbits and clocks obtained by the above two modes are still significantly better than those obtained by using the展开更多
面向精密可靠的远程时间传递需求,提出一种基于北斗三号PPP-B2b轨道的实时精密共视时间传递方法。该方法利用北斗三号精密单点定位(precise point positioning,PPP)服务提供的精密轨道改正数,根据实时载波相位单差技术估算异地接收机的...面向精密可靠的远程时间传递需求,提出一种基于北斗三号PPP-B2b轨道的实时精密共视时间传递方法。该方法利用北斗三号精密单点定位(precise point positioning,PPP)服务提供的精密轨道改正数,根据实时载波相位单差技术估算异地接收机的相对钟差,实现高精度时间传递。基于中国及周边地区6个跟踪站连续多天的北斗三号系统观测数据开展试验,验证了该时间传递方法的性能。试验结果表明:零基线时间传递结果的标准差优于0.03 ns。与事后PPP时间传递相比,长基线时间传递结果差值的标准差优于0.3 ns,时间传递天边界连续性更好。基于北斗三号PPP-B2b轨道的实时精密共视时间传递方法,不依赖精密卫星钟差,能实现亚纳秒量级的时间传递精度,具有易于实现、连续性好的优势。试验结果可为北斗精密时间服务提供一定的参考。展开更多
基金the National Natural Science Foundation of China(Grant Nos.41604031 and 41774042)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20190063)+1 种基金the BDS Industrialization Project(Grant No.GFZX030302030201-2)the National Key Research Program of China Collaborative Precision Positioning Project(Grant No.2016YFB0501900).
文摘The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used.
文摘全球卫星导航系统(global navigation satellite system,GNSS)星载原子钟性能的优劣直接影响GNSS观测信号质量、测距精度、钟差预报与卫星自主导航能力,从而间接影响整个导航系统的服务性能。结合北斗三号系统独特的星间链路(inter-satellite link,ISL)和星地时间双向比对(two-way time transfer,TWTT)体制以及常用的精密轨道与钟差确定(orbit determination and time synchronization,ODTS)体制所估计的精密钟差数据,分析评估了北斗三号在轨原子钟服务性能。结果表明,3种钟差确定体制评估的频率准确度和漂移率结果基本一致,所有卫星频率准确度在(-4~2)×10^(-11)范围以内,氢钟频率准确度优于铷钟,ISL钟差评估的频率漂移率精度略优于ODTS。在评估原子钟稳定度方面,3种钟差确定体制各有优势,短期稳定度方面,ODTS钟差评估优于ISL钟差,基于ODTS评估的3000 s稳定度可达3×10^(-14),且氢钟的短期稳定性优于铷钟;中长期稳定度方面,当平滑时间大于1×10^(4)s时,采用ISL体制的钟差评价中长期稳定度更接近于北斗三号星载原子钟的实际情况;对于7 d以上的长期稳定度评估,基于TWTT的广播钟差评估结果接近于ISL,可用于快速评估。
基金the National Natural Science Foundation of China(Grant Nos.41704035 and 42774012)Office of China Navigation Satellite System(Project No.GFZX03010403).
文摘To provide competitive global positioning and timing services under the condition that monitoring stations are confined to Chinese territory,inter-satellite link(ISL)technology is used by the third-generation BeiDou Navigation Satellite System(BDS-3).The ISL,together with the dual one-way links between satellites and anchor stations,may enable autonomous navigation for BDS-3.In this paper,we propose a general observation model for orbit determination(OD)and time synchronization(TS)directly using non-simultaneous observations,such as raw ISL pseudoranges.With the proposed model,satellite orbits,clocks,and hardware delay biases of ISL equipment can be determined simultaneously by jointly processing inter-satellite one-way pseudorange data and observation data from ground monitoring stations.Moreover,autonomous OD and TS are also achievable with one-way pseudorange data from anchor stations and satellites.Data from eight BDS-3 satellites,two anchor stations,and seven monitoring stations located in China were collected to validate the proposed method.It is shown that by jointly processing data from the ISL and seven monitoring stations,the RMS of overlap orbit differences in radial direction is 0.019 m,the overlap clock difference(95%)is 0.185 ns,and the stability of the estimated hardware delay biases for each satellite is greater than 0.5 ns.Compared with the results obtained with the seven stations,the improvements of orbits in radial direction and clocks are 95.7%and 90.5%,respectively.When the hardware delay biases are fixed to predetermined values,the accuracies of orbits and clocks are further improved.By jointly processing pseudoranges from the satellites and the two anchor stations,the RMS of overlap orbit differences is 0.017 m in the radial direction,and the overlap clock difference(95%)is 0.037 ns.It has also been demonstrated that under the condition of one-way ranging links,the accuracies of orbits and clocks obtained by the above two modes are still significantly better than those obtained by using the
文摘面向精密可靠的远程时间传递需求,提出一种基于北斗三号PPP-B2b轨道的实时精密共视时间传递方法。该方法利用北斗三号精密单点定位(precise point positioning,PPP)服务提供的精密轨道改正数,根据实时载波相位单差技术估算异地接收机的相对钟差,实现高精度时间传递。基于中国及周边地区6个跟踪站连续多天的北斗三号系统观测数据开展试验,验证了该时间传递方法的性能。试验结果表明:零基线时间传递结果的标准差优于0.03 ns。与事后PPP时间传递相比,长基线时间传递结果差值的标准差优于0.3 ns,时间传递天边界连续性更好。基于北斗三号PPP-B2b轨道的实时精密共视时间传递方法,不依赖精密卫星钟差,能实现亚纳秒量级的时间传递精度,具有易于实现、连续性好的优势。试验结果可为北斗精密时间服务提供一定的参考。