Background:1,2,3,4,6-penta-O-galloyl-beta-D-glucose(PGG)is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity.Methods:In this study,the mechanisms of PGG against ...Background:1,2,3,4,6-penta-O-galloyl-beta-D-glucose(PGG)is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity.Methods:In this study,the mechanisms of PGG against gastric cancer were explored through network pharmacology and molecular docking.First,the targets of PGG were searched in the Herbal Ingredients’Targets(HIT),Similarity Ensemble Approach(SEA),and Super-PRED databases.The potential targets related to gastric cancer were predicted from the Human Gene Database(GeneCards)and DisGeNET databases.The intersecting targets of PGG and gastric cancer were obtained by Venn diagram and then subjected to protein-protein interaction analysis to screen hub targets.Functional and pathway enrichment of hub targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases.The differential expression and survival analysis of hub targets in gastric cancer were performed based on The Cancer Genome Atlas database.Finally,the affinity of PGG with hub targets was visualized by molecular docking.Results:Three hub targets were screened,including mitogen-activated protein kinase 14(MAPK14),BCL2 like 1(BCL2L1),and vascular endothelial growth factor A(VEGFA).MAPK14 had a higher expression,while BCL2L1 and VEGFA had lower expression in gastric cancer than in normal conditions.Enrichment analysis indicated enrichment of these hub targets in MAPK,neurotrophin,programmed death-ligand 1(PD-L1)checkpoint,phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt),Ras,and hypoxia-inducible factor-1(HIF-1)signaling pathways.Conclusion:Therefore,network pharmacology and molecular docking analyses revealed that PGG exerts a therapeutic efficacy on gastric cancer by multiple targets(MAPK14,BCL2L1,and VEGFA)and pathways(MAPK,PD-L1 checkpoint,PI3K-Akt,Ras,and HIF-1 pathways).展开更多
Background: New therapeutic targets are needed to improve the outcomes for gastric cancer(GC) patients with advanced disease. Evasion of programmed cell death(apoptosis) is a hallmark of cancer cells and direct induct...Background: New therapeutic targets are needed to improve the outcomes for gastric cancer(GC) patients with advanced disease. Evasion of programmed cell death(apoptosis) is a hallmark of cancer cells and direct induction of apoptosis by targeting the pro-survival BCL2 family proteins represents a promising therapeutic strategy for cancer treatment. Therefore, understanding the molecular mechanisms underpinning cancer cell survival could provide a molecular basis for potential therapeutic interventions. Method: Here we explored the role of BCL2L1 and the encoded anti-apoptotic BCL-XL in GC. Using Droplet Digital PCR(ddPCR) technology to investigate the DNA amplification of BCL2L1 in GC samples and GC cell lines, the sensitivity of GC cell lines to selective BCL-XL inhibitors A1155463 and A1331852, pan-inhibitor ABT-263, and VHL-based PROTAC-BCL-XL was analyzed using(CellTiter-Glo) CTG assay in vitro. Western Blot(WB) was used to detect the protein expression of BCL2 family members in GC cell lines and the manner in which PROTAC-BCL-XL kills GC cells. Coimmunoprecipitation(Co-IP) was used to investigate the mechanism of A1331852 and ABT-263 kills GC cell lines. DDPCR, WB, and real-time PCR(RTPCR) were used to investigate the correlation between DNA, RNA, protein levels, and drug activity. Results: The functional assay showed that a subset of GC cell lines relies on BCL-XL for survival. In gastric cancer cell lines, BCL-XL inhibitors A1155463 and A1331852 are more sensitive than the pan BCL2 family inhibitor ABT-263, indicating that ABT-263 is not an optimal inhibitor of BCL-XL. VHL-based PROTAC-BCL-XL DT2216 appears to be active in GC cells. DT2216 induces apoptosis of gastric cancer cells in a time-and dose-dependent manner through the proteasome pathway. Statistical analysis showed that the BCL-XL protein level predicts the response of GC cells to BCL-XL targeting therapy and BCL2L1 gene CNVs do not reliably predict BCL-XL expression.Conclusion: We identified BCL-XL as a promising therapeutic target in a subset o展开更多
基金supported by the Natural Science Foundation of Gansu Province[Grant Numbers 22JR5RA930,22JR5RA894]the Talent Project of Lanzhou Science and Technology Bureau[Grant Number 2022-3-44]+1 种基金the projects managed by the Administration of Traditional Chinese Medicine[Grant Number GZKG-2022-54]Intra Hospital Fund of the First Hospital of Lanzhou University[Grant Number ldyyyn2021101].
文摘Background:1,2,3,4,6-penta-O-galloyl-beta-D-glucose(PGG)is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity.Methods:In this study,the mechanisms of PGG against gastric cancer were explored through network pharmacology and molecular docking.First,the targets of PGG were searched in the Herbal Ingredients’Targets(HIT),Similarity Ensemble Approach(SEA),and Super-PRED databases.The potential targets related to gastric cancer were predicted from the Human Gene Database(GeneCards)and DisGeNET databases.The intersecting targets of PGG and gastric cancer were obtained by Venn diagram and then subjected to protein-protein interaction analysis to screen hub targets.Functional and pathway enrichment of hub targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases.The differential expression and survival analysis of hub targets in gastric cancer were performed based on The Cancer Genome Atlas database.Finally,the affinity of PGG with hub targets was visualized by molecular docking.Results:Three hub targets were screened,including mitogen-activated protein kinase 14(MAPK14),BCL2 like 1(BCL2L1),and vascular endothelial growth factor A(VEGFA).MAPK14 had a higher expression,while BCL2L1 and VEGFA had lower expression in gastric cancer than in normal conditions.Enrichment analysis indicated enrichment of these hub targets in MAPK,neurotrophin,programmed death-ligand 1(PD-L1)checkpoint,phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt),Ras,and hypoxia-inducible factor-1(HIF-1)signaling pathways.Conclusion:Therefore,network pharmacology and molecular docking analyses revealed that PGG exerts a therapeutic efficacy on gastric cancer by multiple targets(MAPK14,BCL2L1,and VEGFA)and pathways(MAPK,PD-L1 checkpoint,PI3K-Akt,Ras,and HIF-1 pathways).
文摘Background: New therapeutic targets are needed to improve the outcomes for gastric cancer(GC) patients with advanced disease. Evasion of programmed cell death(apoptosis) is a hallmark of cancer cells and direct induction of apoptosis by targeting the pro-survival BCL2 family proteins represents a promising therapeutic strategy for cancer treatment. Therefore, understanding the molecular mechanisms underpinning cancer cell survival could provide a molecular basis for potential therapeutic interventions. Method: Here we explored the role of BCL2L1 and the encoded anti-apoptotic BCL-XL in GC. Using Droplet Digital PCR(ddPCR) technology to investigate the DNA amplification of BCL2L1 in GC samples and GC cell lines, the sensitivity of GC cell lines to selective BCL-XL inhibitors A1155463 and A1331852, pan-inhibitor ABT-263, and VHL-based PROTAC-BCL-XL was analyzed using(CellTiter-Glo) CTG assay in vitro. Western Blot(WB) was used to detect the protein expression of BCL2 family members in GC cell lines and the manner in which PROTAC-BCL-XL kills GC cells. Coimmunoprecipitation(Co-IP) was used to investigate the mechanism of A1331852 and ABT-263 kills GC cell lines. DDPCR, WB, and real-time PCR(RTPCR) were used to investigate the correlation between DNA, RNA, protein levels, and drug activity. Results: The functional assay showed that a subset of GC cell lines relies on BCL-XL for survival. In gastric cancer cell lines, BCL-XL inhibitors A1155463 and A1331852 are more sensitive than the pan BCL2 family inhibitor ABT-263, indicating that ABT-263 is not an optimal inhibitor of BCL-XL. VHL-based PROTAC-BCL-XL DT2216 appears to be active in GC cells. DT2216 induces apoptosis of gastric cancer cells in a time-and dose-dependent manner through the proteasome pathway. Statistical analysis showed that the BCL-XL protein level predicts the response of GC cells to BCL-XL targeting therapy and BCL2L1 gene CNVs do not reliably predict BCL-XL expression.Conclusion: We identified BCL-XL as a promising therapeutic target in a subset o