In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modul...In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.展开更多
In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evoluti...In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2004AA8042111)Program for "IRTXMU".
文摘In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.
基金Project(9140xx8020212xx) supported by the Advanced Research Foundation,ChinaProject(GZ2018KF003) supported by the State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System,China
文摘In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.