Accelerating methods are used to enhance TCP performance over satellite links by employing Performance Enhancement Proxies (PEPs). However, providing a secure connection through the PEPs seems to be impossible. In thi...Accelerating methods are used to enhance TCP performance over satellite links by employing Performance Enhancement Proxies (PEPs). However, providing a secure connection through the PEPs seems to be impossible. In this paper an appropriate method is proposed in order to provide an accelerated secure E2E connection. We show an efficient secure three-party protocol, based on public key infrastructure (PKI), which provides security against spiteful adversaries. Our construction is based on applying asymmetric cryptography techniques to the original IKE protocol. Security protocols use cryptography to set up private communication channels on an insecure network. Many protocols contain flaws, and because security goals are seldom specified in detail, we cannot be certain what constitute a flaw. Proofing security properties is essential for the development of secure protocol. We give a logic analysis of the proposed protocol with the BAN-logic and discuss the security of the protocol. The result indicates that the protocol is correct and satisfies the security requirements of Internet key exchange. Based on the results of this preliminary analysis, we have implemented a prototype of our security protocol and evaluated its performance and checked safety properties of security protocol, and the results show that the protocol is robust and safe against major security threats.展开更多
Infrastructure as a Service (laaS) has brought advantages to users because virtualization technology hides the details of the physical resources, but this leads to the problem of users being unable to perceive their...Infrastructure as a Service (laaS) has brought advantages to users because virtualization technology hides the details of the physical resources, but this leads to the problem of users being unable to perceive their security. This defect has obstructed cloud computing from wide-spread popularity and development. To solve this problem, a dynamic measurement protocol in laaS is presented in this paper. The protocol makes it possible for the user to get the real-time security status of the resources, thereby solving the problem of guaranteeing dynamic credibility. This changes the cloud service security provider from the operator to the users themselves. This study has verified the security of the protocol by means of Burrow-Abadi-Needham (BAN) logic, and the result shows that it can satisfy requirements for innovation, privacy, and integrity. Finally, based on different laaS platforms, this study has conducted a performance analysis to demonstrate that this protocol is reliable, secure, and efficient.展开更多
文摘Accelerating methods are used to enhance TCP performance over satellite links by employing Performance Enhancement Proxies (PEPs). However, providing a secure connection through the PEPs seems to be impossible. In this paper an appropriate method is proposed in order to provide an accelerated secure E2E connection. We show an efficient secure three-party protocol, based on public key infrastructure (PKI), which provides security against spiteful adversaries. Our construction is based on applying asymmetric cryptography techniques to the original IKE protocol. Security protocols use cryptography to set up private communication channels on an insecure network. Many protocols contain flaws, and because security goals are seldom specified in detail, we cannot be certain what constitute a flaw. Proofing security properties is essential for the development of secure protocol. We give a logic analysis of the proposed protocol with the BAN-logic and discuss the security of the protocol. The result indicates that the protocol is correct and satisfies the security requirements of Internet key exchange. Based on the results of this preliminary analysis, we have implemented a prototype of our security protocol and evaluated its performance and checked safety properties of security protocol, and the results show that the protocol is robust and safe against major security threats.
基金supported by the National Basic Research Program of China (No. 2014CB340600)the National Natural Science Foundation of China (Nos. 61332019, 61173138, 6127245, and 91118003)the New Products and Technology Research and Development Projects of Hubei Province (No. 2012BAA03004)
文摘Infrastructure as a Service (laaS) has brought advantages to users because virtualization technology hides the details of the physical resources, but this leads to the problem of users being unable to perceive their security. This defect has obstructed cloud computing from wide-spread popularity and development. To solve this problem, a dynamic measurement protocol in laaS is presented in this paper. The protocol makes it possible for the user to get the real-time security status of the resources, thereby solving the problem of guaranteeing dynamic credibility. This changes the cloud service security provider from the operator to the users themselves. This study has verified the security of the protocol by means of Burrow-Abadi-Needham (BAN) logic, and the result shows that it can satisfy requirements for innovation, privacy, and integrity. Finally, based on different laaS platforms, this study has conducted a performance analysis to demonstrate that this protocol is reliable, secure, and efficient.