In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise rat...In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise ratio (SNR) is low, applying this mechanism in DCF greatly improves the throughput and lowers the channel idle time. This paper presents an analytical model for the performance study of IEEE 802.11 MB-DCF for nonsaturated heterogeneous traffic in the presence of transmission errors. First, we introduce the MB-DCF and compare its performance to IEEE 802.11 DCF with binary exponential backoff (BEB). The IEEE 802.11 DCF with BEB mechanism suffers from more channel idle time under low SNR. The MB-DCF ensures high throughput and low packet delay by reducing the channel idle time under the low traffic in the network. However, to the best of the authors' knowledge, there are no previous works that enhance the performance of the DCF under imperfect wireless channel. We show through analysis that the proposed mechanism greatly outperforms the original IEEE 802.11 DCF in the imperfect channel condition. The effectiveness of physical and link layer parameters on throughput performance is explored. We also present a throughput investigation of the heterogeneous traffic for different radio conditions.展开更多
This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic ac...This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method.The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions.In a real radio environment,the received signal power at the access point from a station is subjected to deterministic path loss,shadowing,and fast multipath fading.The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER).To alleviate the low performance of IEEE 802.11 DCF,a new mechanism is introduced,which greatly outperforms the existing methods under a high BER.A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.展开更多
Medium access control (MAC) protocols such as IEEE 802.11 are used in wireless networks for sharing of the wireless medium. The random nature of the protocol operation together with the inherent difficulty of monito...Medium access control (MAC) protocols such as IEEE 802.11 are used in wireless networks for sharing of the wireless medium. The random nature of the protocol operation together with the inherent difficulty of monitoring in the open poses significant challenges. All nodes are expected to comply with the protocol rules. But, some nodes in order to gain greater benefits misbehave by not complying with the rules. One such selfish misbehavior is waiting for smaller back-off intervals when compared to the other nodes in the same subnet. Such selfish misbehavior is being tackled in this paper. A diagnosis scheme and a penalty scheme are being proposed for overcoming such selfish-misbehavior at MAC layer of mobile ad hoc networks which could be extended to other types of networks also.展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed v...With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed vehicular networks,quality of service(QoS)of the systems would degrade dramatically because of serious packet collisions in the absence of sufficient link knowledge.Focusing on the fairness optimization,a Q-learning-based collision avoidance(QCA)scheme,which is characterized by an ingenious bidirectional backoff reward model RQCA corresponding to arbitrary backoff stage transitions,has been proposed in an intelligent distributed media access control protocol.In QCA,an intelligent bidirectional backoff agent based on the Markov decision process model can actively motivate each vehicle agent to update itself toward an optimal backoff sub-intervel BSIopt through either positive or negative bidirectional transition individually,resulting in the distinct fair communication with a proper balance of the resource allocation.According to the reinforcement learning theory,the problem of goodness evaluation on the backoff stage self-selection policy is equal to the problem of maximizing Q function of the vehicle in the current environment.The final decision on BSI_(opt) related to an optimal contention window range was solved through maximizing the Q value or Q_(max).The ε-greedy algorithm was used to keep a reasonable convergence of the Q_(max) solution.For the fairness evaluation of QCA,four kinds of dynamic impacts on the vehicular networks were investigated:mobility,density,payload size,and data rate with a network simulator NS2.Consequently,QCA can achieve fair communication efficiently and robustly,with advantages of superior Jain’s fairness index,relatively high packet delivery ratio,and low time delay.展开更多
Grant-free random access(RA)is attractive for future network due to the minimized access delay.In this paper,we investigate the grantfree RA in multicell massive multiple-input multipleoutput(MIMO)systems with pilot r...Grant-free random access(RA)is attractive for future network due to the minimized access delay.In this paper,we investigate the grantfree RA in multicell massive multiple-input multipleoutput(MIMO)systems with pilot reuse.With backoff mechanism,user equipments(UEs)in each cell are randomly activated,and active UEs randomly select orthogonal pilots from a predefined pilot pool,which results in a random pilot contamination among cells.With the help of indicators that capture the uncertainties of UE activation and pilot selection,we derive a closed-form approximation of the spectral efficiency per cell after averaging over the channel fading as well as UEs’random behaviors.Based on the analysis,the optimal backoff parameter and pilot length that maximize the spectral efficiency can be obtained.We find that the backoff mechanism is necessary for the system with large number of UEs,as it can bring significant gains on the spectral efficiency.Moreover,as UE number grows,more backoff time is needed.展开更多
In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can p...In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can predict the channel's congestion level reasonably.The dominant idea of the new scheme is to record the channel's busy or idle situation in the backoff stage by sending Sensor Nodes(SNs),and according to the congestion level every SN can change the contention window adaptively when send packets successfully to minimize collisions,saving energy and channel resources.The result of simulation shows that compared with other MAC protocols,the PFMAC protocol can improve network throughput and reduce energy consumption in high speed network en-vironment.展开更多
Compared with flat routing protocols, clustering is a fundamental performance improvement technique in wireless sensor networks, which can increase network scalability and lifetime. In this paper, we integrate the mul...Compared with flat routing protocols, clustering is a fundamental performance improvement technique in wireless sensor networks, which can increase network scalability and lifetime. In this paper, we integrate the multi-hop technique with a backoff-based clustering algorithm to organize sensors. By using an adaptive backoff strategy, the algorithm not only realizes load balance among sensor node, but also achieves fairly uniform cluster head distribution across the network. Simulation results also demonstrate our algorithm is more energy-efficient than classical ones. Our algorithm is also easily extended to generate a hierarchy of cluster heads to obtain better network management and energy-efficiency.展开更多
In this paper, an adaptive random access strategy is presented for multi-channel relaying networks to address the issue of random access of the non-real-time (NRT) services. In the proposed scheme, NRT services acce...In this paper, an adaptive random access strategy is presented for multi-channel relaying networks to address the issue of random access of the non-real-time (NRT) services. In the proposed scheme, NRT services access the base station (BS) by first accessing the nearest relay node (RN). When collision occurs, for the sake of fast and efficient access, the user will begin a frequency domain backoff rather than randomly retry in time domain. A remarkable feature of this scheme is that the RN will adaptively determine the maximum allowed frequency backoff window at each access period. This is achieved according to the new arrival rate as well as the number of available access channels. Moreover, to alleviate the interference caused by sub-channel reuse among RNs, a fractional frequency reuse scheme is also considered. The analysis and numerical results demonstrate that our scheme achieves higher throughput, lower collision probability and lower access delay than conventional slotted Aloha as well as the scheme without frequency backoff window adaptation.展开更多
A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve...A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE 802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff (BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-rithm takes the history of successive packet transmit trials into account to provide a better QoS performance. The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet delivery fraction compared to the original IEEE 802.11.展开更多
The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrai...The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrains from sending any packet before the expiry of its backoff period. After that, the node is required to sense the medium for two successive time slots to assert that the medium is clear from any ongoing transmissions (this is referred to as Clear Channel Assessment (CCA)). Upon finding the medium busy, the node doubles its backoff period and repeats that process. While effective in reducing the likelihood of collisions, this approach takes no measures to preserve the priorities among the nodes contending to access the medium. In this paper we propose the Priority-Based BEB (PB-BEB) algorithm in which we enhance BEB such that nodes’ priority is preserved. We provide a simulation study to examine the performance of PB-BEB. Our simulations show that the latter not only outperforms BEB in terms of fairness, but also show promising results in terms other parameters like channel utilization, reliability, and power conservation.展开更多
Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centra...Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centralized server to avoid collisions which have negative effects on the performance of the network. Access to the shared media is controlled by a Backoff algorithm that is a part of the Media Access Protocol. In this paper, we improve the History Based Probabilistic Backoff (HPPB) algorithm by modifying the increment/decrement behavior of the Contention Window to introduce History Based Increment Backoff (HBIB) algorithm which outperforms HBPB in terms of throughput and end-to-end delay with various numbers of nodes and different traffic loads.展开更多
文摘In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise ratio (SNR) is low, applying this mechanism in DCF greatly improves the throughput and lowers the channel idle time. This paper presents an analytical model for the performance study of IEEE 802.11 MB-DCF for nonsaturated heterogeneous traffic in the presence of transmission errors. First, we introduce the MB-DCF and compare its performance to IEEE 802.11 DCF with binary exponential backoff (BEB). The IEEE 802.11 DCF with BEB mechanism suffers from more channel idle time under low SNR. The MB-DCF ensures high throughput and low packet delay by reducing the channel idle time under the low traffic in the network. However, to the best of the authors' knowledge, there are no previous works that enhance the performance of the DCF under imperfect wireless channel. We show through analysis that the proposed mechanism greatly outperforms the original IEEE 802.11 DCF in the imperfect channel condition. The effectiveness of physical and link layer parameters on throughput performance is explored. We also present a throughput investigation of the heterogeneous traffic for different radio conditions.
文摘This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method.The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions.In a real radio environment,the received signal power at the access point from a station is subjected to deterministic path loss,shadowing,and fast multipath fading.The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER).To alleviate the low performance of IEEE 802.11 DCF,a new mechanism is introduced,which greatly outperforms the existing methods under a high BER.A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.
文摘Medium access control (MAC) protocols such as IEEE 802.11 are used in wireless networks for sharing of the wireless medium. The random nature of the protocol operation together with the inherent difficulty of monitoring in the open poses significant challenges. All nodes are expected to comply with the protocol rules. But, some nodes in order to gain greater benefits misbehave by not complying with the rules. One such selfish misbehavior is waiting for smaller back-off intervals when compared to the other nodes in the same subnet. Such selfish misbehavior is being tackled in this paper. A diagnosis scheme and a penalty scheme are being proposed for overcoming such selfish-misbehavior at MAC layer of mobile ad hoc networks which could be extended to other types of networks also.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
文摘With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed vehicular networks,quality of service(QoS)of the systems would degrade dramatically because of serious packet collisions in the absence of sufficient link knowledge.Focusing on the fairness optimization,a Q-learning-based collision avoidance(QCA)scheme,which is characterized by an ingenious bidirectional backoff reward model RQCA corresponding to arbitrary backoff stage transitions,has been proposed in an intelligent distributed media access control protocol.In QCA,an intelligent bidirectional backoff agent based on the Markov decision process model can actively motivate each vehicle agent to update itself toward an optimal backoff sub-intervel BSIopt through either positive or negative bidirectional transition individually,resulting in the distinct fair communication with a proper balance of the resource allocation.According to the reinforcement learning theory,the problem of goodness evaluation on the backoff stage self-selection policy is equal to the problem of maximizing Q function of the vehicle in the current environment.The final decision on BSI_(opt) related to an optimal contention window range was solved through maximizing the Q value or Q_(max).The ε-greedy algorithm was used to keep a reasonable convergence of the Q_(max) solution.For the fairness evaluation of QCA,four kinds of dynamic impacts on the vehicular networks were investigated:mobility,density,payload size,and data rate with a network simulator NS2.Consequently,QCA can achieve fair communication efficiently and robustly,with advantages of superior Jain’s fairness index,relatively high packet delivery ratio,and low time delay.
基金supported in part by the National Natural Science Foundation of China under Grant 62171231 and 62071247in part by the National Key Research & Development Program of China under Grant No. 2020YFB1807202 and 2020YFB1804900
文摘Grant-free random access(RA)is attractive for future network due to the minimized access delay.In this paper,we investigate the grantfree RA in multicell massive multiple-input multipleoutput(MIMO)systems with pilot reuse.With backoff mechanism,user equipments(UEs)in each cell are randomly activated,and active UEs randomly select orthogonal pilots from a predefined pilot pool,which results in a random pilot contamination among cells.With the help of indicators that capture the uncertainties of UE activation and pilot selection,we derive a closed-form approximation of the spectral efficiency per cell after averaging over the channel fading as well as UEs’random behaviors.Based on the analysis,the optimal backoff parameter and pilot length that maximize the spectral efficiency can be obtained.We find that the backoff mechanism is necessary for the system with large number of UEs,as it can bring significant gains on the spectral efficiency.Moreover,as UE number grows,more backoff time is needed.
基金Supported by the 948 Project (2012-4-21)the Ph.D.Programs Foundation of Ministry of Education of China(20100062120008)the Scientific Research Fund of Heilongjiang Provincial Education Department(11553022)
文摘In view of the problem that existing Media Access Control(MAC) protocols can not pro-vide real-time monitor on network conditions,this paper puts forward a new MAC protocol- Predict and Feedback MAC(PFMAC) which can predict the channel's congestion level reasonably.The dominant idea of the new scheme is to record the channel's busy or idle situation in the backoff stage by sending Sensor Nodes(SNs),and according to the congestion level every SN can change the contention window adaptively when send packets successfully to minimize collisions,saving energy and channel resources.The result of simulation shows that compared with other MAC protocols,the PFMAC protocol can improve network throughput and reduce energy consumption in high speed network en-vironment.
基金Supported by the National Natural Science Foundation of China under Grant No. 60872018,60721002,60875038the National Basic Research 973 Program of China under Grant No. 2007CB310607+2 种基金SRFDP Project under Grant No. 20070293001the Science and Technology Support Foundation of Jiangsu Province under Grant No. BE2009142 and BE2010180the Scientific Research Foundation of Graduate School of Nanjing University under Grant No. 2011CL07
文摘Compared with flat routing protocols, clustering is a fundamental performance improvement technique in wireless sensor networks, which can increase network scalability and lifetime. In this paper, we integrate the multi-hop technique with a backoff-based clustering algorithm to organize sensors. By using an adaptive backoff strategy, the algorithm not only realizes load balance among sensor node, but also achieves fairly uniform cluster head distribution across the network. Simulation results also demonstrate our algorithm is more energy-efficient than classical ones. Our algorithm is also easily extended to generate a hierarchy of cluster heads to obtain better network management and energy-efficiency.
基金Supported by the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z262)the National Basic Research Program of China (Grant No. 2009CB320400)the National Natural Science Foundation of China (Grant No. 60832009)
文摘In this paper, an adaptive random access strategy is presented for multi-channel relaying networks to address the issue of random access of the non-real-time (NRT) services. In the proposed scheme, NRT services access the base station (BS) by first accessing the nearest relay node (RN). When collision occurs, for the sake of fast and efficient access, the user will begin a frequency domain backoff rather than randomly retry in time domain. A remarkable feature of this scheme is that the RN will adaptively determine the maximum allowed frequency backoff window at each access period. This is achieved according to the new arrival rate as well as the number of available access channels. Moreover, to alleviate the interference caused by sub-channel reuse among RNs, a fractional frequency reuse scheme is also considered. The analysis and numerical results demonstrate that our scheme achieves higher throughput, lower collision probability and lower access delay than conventional slotted Aloha as well as the scheme without frequency backoff window adaptation.
文摘A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE 802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff (BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-rithm takes the history of successive packet transmit trials into account to provide a better QoS performance. The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet delivery fraction compared to the original IEEE 802.11.
文摘The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrains from sending any packet before the expiry of its backoff period. After that, the node is required to sense the medium for two successive time slots to assert that the medium is clear from any ongoing transmissions (this is referred to as Clear Channel Assessment (CCA)). Upon finding the medium busy, the node doubles its backoff period and repeats that process. While effective in reducing the likelihood of collisions, this approach takes no measures to preserve the priorities among the nodes contending to access the medium. In this paper we propose the Priority-Based BEB (PB-BEB) algorithm in which we enhance BEB such that nodes’ priority is preserved. We provide a simulation study to examine the performance of PB-BEB. Our simulations show that the latter not only outperforms BEB in terms of fairness, but also show promising results in terms other parameters like channel utilization, reliability, and power conservation.
文摘Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centralized server to avoid collisions which have negative effects on the performance of the network. Access to the shared media is controlled by a Backoff algorithm that is a part of the Media Access Protocol. In this paper, we improve the History Based Probabilistic Backoff (HPPB) algorithm by modifying the increment/decrement behavior of the Contention Window to introduce History Based Increment Backoff (HBIB) algorithm which outperforms HBPB in terms of throughput and end-to-end delay with various numbers of nodes and different traffic loads.