Exploration of deep mineralization,particularly where the mineralization of interest is covered by a conductive overburden,is still a challenge for the conventional transient electromagnetic(TEM)method,which measures ...Exploration of deep mineralization,particularly where the mineralization of interest is covered by a conductive overburden,is still a challenge for the conventional transient electromagnetic(TEM)method,which measures TEM response using induction coils as the sensor.However,sensors such as fluxgate and superconductive quantum interfere device(SQUID)magnetometers can measure the B-field directly,which can provide more reliable deep information for mineralization exploration.In this paper,we report on the research and development of our newly developed high-temperature su-perconductor(HTS)SQUID magnetometer,which is cooled by liquid nitrogen at 77 K,and its applica-tion in TEM measurement for deep exploration in a gold deposit in China.This improved SQUID magnetometer version has a good performance with noise(60 fT/√Hz),slew rate(0.8 mT/S),dynamic range(100 dB),sensitivity(6.25 mV/nT),and bandwidth(DC-20 kHz).To find deep and peripheral ore in the Baiyun gold deposit located in Liaoning Province,NE China,both the SQUID magnetometer and induction coil were used for TEM data acquisition.Results show that TEM can detect the distribution of local strata and the faults contained within them.Results also indicate that the SQUID magnetome-ter has superior response performance for response over geological targets with slower decay time when compared to the induction coil signals.The SQUID magnetometer is more sensitive at observing the induced-polarization effect which is closely related to the ore-controlling faults.展开更多
The decoherence of a central electron spin of an atom coupled to an anti-ferromagnetic spin bath in the presence of a time varying B-Field (VBF) is investigated applying the Holstein-Primak off and Bloch transformatio...The decoherence of a central electron spin of an atom coupled to an anti-ferromagnetic spin bath in the presence of a time varying B-Field (VBF) is investigated applying the Holstein-Primak off and Bloch transformations approaches. The Boltzmann entropy and the specific heat capacity at a given temperature are obtained and show the correlation of the coupling of the spin bath and the electron spin of the central atom. At low frequencies the coherence of the coupled system is dominated by the magnetic field intensity. At low VBF intensity, there is decrease in entropy and heat capacity at increase external magnetic field that show the decoherence suppression of the central electron spin atom. The crossing observed in the specific heat capacity corresponds to the critical field point Bc of the system which represents the point of transition from the anti-ferromagnetic system to the ferromagnetic one.展开更多
This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferrom...This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.展开更多
The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF ...The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF generator. The azimuthal B-field in the channel of 0.5-1.5 kG was formed by a pulsed current from external capacitor bank. Control of the hydrogen gas pressure was provided by an electromagnetic puffvalve. The paper describes experimental devices and results on the generated plasma parameters as function of RF frequency, antenna voltage, pulse duration and puffgas pressure. When operating at-1 kG B-field, ambient gas pressure in the range of few -10 mTorr, and 5 kV antenna voltage at resonant frequency of 150 kHz, the plasma density range was (3-7)×10^12 cm3 with a temperature of a few eV.展开更多
基金This study was supported by the National Key Research and Development Project of China(No.2018YFC0603803)Fundamental Research Funds of Chinese Academy of Geological Sciences(Nos.AS2020Y01,AS2020P01).
文摘Exploration of deep mineralization,particularly where the mineralization of interest is covered by a conductive overburden,is still a challenge for the conventional transient electromagnetic(TEM)method,which measures TEM response using induction coils as the sensor.However,sensors such as fluxgate and superconductive quantum interfere device(SQUID)magnetometers can measure the B-field directly,which can provide more reliable deep information for mineralization exploration.In this paper,we report on the research and development of our newly developed high-temperature su-perconductor(HTS)SQUID magnetometer,which is cooled by liquid nitrogen at 77 K,and its applica-tion in TEM measurement for deep exploration in a gold deposit in China.This improved SQUID magnetometer version has a good performance with noise(60 fT/√Hz),slew rate(0.8 mT/S),dynamic range(100 dB),sensitivity(6.25 mV/nT),and bandwidth(DC-20 kHz).To find deep and peripheral ore in the Baiyun gold deposit located in Liaoning Province,NE China,both the SQUID magnetometer and induction coil were used for TEM data acquisition.Results show that TEM can detect the distribution of local strata and the faults contained within them.Results also indicate that the SQUID magnetome-ter has superior response performance for response over geological targets with slower decay time when compared to the induction coil signals.The SQUID magnetometer is more sensitive at observing the induced-polarization effect which is closely related to the ore-controlling faults.
文摘The decoherence of a central electron spin of an atom coupled to an anti-ferromagnetic spin bath in the presence of a time varying B-Field (VBF) is investigated applying the Holstein-Primak off and Bloch transformations approaches. The Boltzmann entropy and the specific heat capacity at a given temperature are obtained and show the correlation of the coupling of the spin bath and the electron spin of the central atom. At low frequencies the coherence of the coupled system is dominated by the magnetic field intensity. At low VBF intensity, there is decrease in entropy and heat capacity at increase external magnetic field that show the decoherence suppression of the central electron spin atom. The crossing observed in the specific heat capacity corresponds to the critical field point Bc of the system which represents the point of transition from the anti-ferromagnetic system to the ferromagnetic one.
文摘This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.
文摘The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF generator. The azimuthal B-field in the channel of 0.5-1.5 kG was formed by a pulsed current from external capacitor bank. Control of the hydrogen gas pressure was provided by an electromagnetic puffvalve. The paper describes experimental devices and results on the generated plasma parameters as function of RF frequency, antenna voltage, pulse duration and puffgas pressure. When operating at-1 kG B-field, ambient gas pressure in the range of few -10 mTorr, and 5 kV antenna voltage at resonant frequency of 150 kHz, the plasma density range was (3-7)×10^12 cm3 with a temperature of a few eV.
文摘传统的瞬变电磁信息获取方式大多采用空芯线圈和磁芯线圈形式,用以测量磁场随时间变化率,但是晚期信号往往较弱,不利于分辨异常。笔者开展了直接测量瞬变电磁法磁场参数的模拟和实测效果分析研究。首先通过对B场和d B/dt参数的响应特性分析,认为B场参数在晚期探测方面具有一定的优越性;分别采用澳大利亚产SM24瞬变电磁系统(磁通门磁探头,直接测量B场)和GDP-32仪器(感应线圈,测量感应电压)进行了实测数据的对比,在同样瞬变电磁观测装置情况下,发现采用磁通门传感器所测量B场数据比采用感应线圈测量的二次感应电压数据效果较好,即:磁通门传感器的特征频率相对较低(往往小于1 k Hz),衰减速度慢,磁场B数据与磁场变化率d B/dt场数据的幅值范围较大,受低阻覆盖层影响程度小,有利于晚期测量。研究结果表明开发和使用磁通门传感器是解决瞬变电磁精细探测的突破方向之一。