经典的 Bell & L a Padula( BL P)模型是在计算机安全系统中实现多级安全性 ( ML S)支持的基础 ,被视作基本安全公理 .结合以 L inux为基础的一个安全操作系统 ( RS- L inux)的开发 ,讨论抽象的 BL P安全公理在安全操作系统实现中...经典的 Bell & L a Padula( BL P)模型是在计算机安全系统中实现多级安全性 ( ML S)支持的基础 ,被视作基本安全公理 .结合以 L inux为基础的一个安全操作系统 ( RS- L inux)的开发 ,讨论抽象的 BL P安全公理在安全操作系统实现中的实际意义 .从理论上构造 BL P公理的一种新的实施方法 ( ABL P方法 ) ,并给出该方法的正确性证明 .ABL P方法主要由 3条访问控制规则构成 ,其特点是允许主体的当前敏感标记进行适应性调整 ,它以常规实施方法为基础 ,克服了常规实施方法在标记指派方面的不足 ,为安全判定增加了灵活性 .展开更多
After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first...After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.展开更多
This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on componen...This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.展开更多
This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant fo...This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.展开更多
After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organiz...After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organize homogeneous divisions of the limited development of the exponential function, that is opening the way to the use of a whole bunch of new primary functions in Differential Calculus. He then shows how new supercomplex products in dimension 3 make it possible to calculate fractals whose connexity depends on the product considered. We recall the geometry of convex polygons and regular polygons.展开更多
文摘After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.
文摘After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organize homogeneous divisions of the limited development of the exponential function, that is opening the way to the use of a whole bunch of new primary functions in Differential Calculus. He then shows how new supercomplex products in dimension 3 make it possible to calculate fractals whose connexity depends on the product considered. We recall the geometry of convex polygons and regular polygons.