期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于生成对抗网络的主机入侵风险识别 被引量:1
1
作者 林英 李元培 潘梓文 《计算机应用与软件》 北大核心 2021年第11期331-337,共7页
随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN... 随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN,该模型能有效解决梯度偏移或梯度消失的问题。TR-GAN相较于AC-GAN及LS-GAN,不但风险识别准确率更稳定,最大识别准确率达到80%,且其风险样本生成模块能在较少训练迭代轮数下就生成与真实攻击样本具有相同特征的攻击样本。生成的攻击样本不但可以作为训练样本的补充,而且可作为部署系统安全策略的参考。 展开更多
关键词 入侵风险识别 生成对抗网络 辅助分类器-生成对抗网络 最小二乘-生成对抗网络 主机特征
下载PDF
基于生成对抗网络的无载体信息隐藏 被引量:30
2
作者 刘明明 张敏情 +2 位作者 刘佳 高培贤 张英男 《应用科学学报》 CAS CSCD 北大核心 2018年第2期371-382,共12页
传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行... 传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行传递,再通过判别器将含密图像中的秘密信息提取出来,并借助生成对抗网络实现无载体信息隐藏.实验结果和分析表明,该隐藏方法在隐写容量、抗隐写分析、安全性方面均有良好表现. 展开更多
关键词 信息隐藏 无载体信息隐藏 生成对抗网络 ACgan(auxiliary classifier gan)
下载PDF
基于数据增强的小样本辐射源个体识别方法
3
作者 王艺卉 闫文君 +1 位作者 段可欣 于楷泽 《雷达科学与技术》 北大核心 2024年第1期104-110,118,共8页
针对样本数据难获取、捕捉样本类别不全面等样本不足的小样本学习识别准确率不高的困境,提出基于数据增强的小样本辐射源个体识别方法。首先,通过时域翻转、振幅反转、振幅缩放和噪声处理等方法对小样本数据集进行数据集扩充;其次,将噪... 针对样本数据难获取、捕捉样本类别不全面等样本不足的小样本学习识别准确率不高的困境,提出基于数据增强的小样本辐射源个体识别方法。首先,通过时域翻转、振幅反转、振幅缩放和噪声处理等方法对小样本数据集进行数据集扩充;其次,将噪声序列和类别标签输入生成器进一步生成“以假乱真”的生成样本,提高生成样本的多样性并通过辅助分类器同步完成真假样本判别和类别预测;最后,根据判别器动态反馈渐进式调整损失函数权值,重点关注高质量样本进一步优化网络,提高识别准确性。 展开更多
关键词 辐射源个体识别 小样本 数据增强 辅助分类生成对抗网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部