期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于光电导航无人驾驶电动汽车自动寻迹控制系统研究 被引量:11
1
作者 王伟 陈慧 +1 位作者 刁增祥 杨建涛 《汽车工程》 EI CSCD 北大核心 2008年第2期137-140,共4页
在轮毂电机驱动电动汽车技术的基础上,采用光电传感器自动辨识行驶路径,利用车辆行驶预瞄理论,开发了无人驾驶汽车自动寻迹行驶控制系统。试验表明,该系统稳定性好、控制精度高和响应速度快。
关键词 无人驾驶电动汽车 光电导航 自动寻迹 控制系统
下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制
2
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向基函数神经网络 粒子群优化算法 参数预测
下载PDF
Dynamic Cell Modeling for Accurate SOC Estimation in Autonomous Electric Vehicles
3
作者 Qasim Ajao Lanre Sadeeq 《Journal of Power and Energy Engineering》 2023年第8期1-15,共15页
This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 A... This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, optimized for power-needy applications. The AEV operates in a harsh environment with rate requirements up to ±25C and highly dynamic rate profiles, unlike portable-electronic applications with constant power output and fractional C rates. SOC estimation methods effective in portable electronics may not suffice for the AEV. Accurate SOC estimation necessitates a precise cell model. The proposed SOC estimation method utilizes a detailed Kalman-filtering approach. The cell model must include SOC as a state in the model state vector. Multiple cell models are presented, starting with a simple one employing “Coulomb counting” as the state equation and Shepherd’s rule as the output equation, lacking prediction of cell relaxation dynamics. An improved model incorporates filter states to account for relaxation and other dynamics in closed-circuit cell voltage, yielding better performance. The best overall results are achieved with a method combining nonlinear autoregressive filtering and dynamic radial basis function networks. The paper includes lab test results comparing physical cells with model predictions. The most accurate models obtained have an RMS estimation error lower than the quantization noise floor expected in the battery-management-system design. Importantly, these models enable precise SOC estimation, allowing the vehicle controller to utilize the battery pack’s full operating range without overcharging or undercharging concerns. 展开更多
关键词 autonomous electric vehicle Modeling Battery Model Battery Management Systems (BMS) Lithium Polymer State of Charge Kalman-Filter
下载PDF
An adaptive cascade trajectory tracking control for over-actuated autonomous electric vehicles with input saturation
4
作者 GUO JingHua LUO YuGong +2 位作者 WANG JingYao LI KeQiang CHEN Tao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2153-2160,共8页
This paper presented a novel adaptive cascade nonlinear trajectory tracking control scheme of over-actuated autonomous electric vehicles involving input saturation. First, a nonlinear vehicle dynamic model with input ... This paper presented a novel adaptive cascade nonlinear trajectory tracking control scheme of over-actuated autonomous electric vehicles involving input saturation. First, a nonlinear vehicle dynamic model with input saturation is established, which can accurately describe the features of uncertainties and coupling of autonomous electric vehicles, and the hyperbolic tangent function is designed to estimate the saturation function for dealing with the input saturation problem. Then, a novel adaptive cascade trajectory tracking control scheme is designed. An adaptive neural network-based terminal sliding control law is proposed for producing the generalized force/moment in real-time, the asymptotic stability of this adaptive control system is proven by Lyapunov theory, and a quasi-newton distribution law is designed to determine the optimum tire forces that guarantee the actual generalized forces/moment are close to the desired values. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 autonomous electric vehicles input saturation over-actuated DISTRIBUTION adaptive terminal sliding control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部