期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic Fault Prediction of Wind Turbine Main Bearing Based on SCADA Data and Artificial Neural Network 被引量:2
1
作者 Zhenyou Zhang 《Open Journal of Applied Sciences》 2018年第6期211-225,共15页
As the demand for wind energy continues to grow at exponential rate, reducing operation and maintenance (O & M) costs and improving reliability have become top priorities in wind turbine maintenance strategies. Pr... As the demand for wind energy continues to grow at exponential rate, reducing operation and maintenance (O & M) costs and improving reliability have become top priorities in wind turbine maintenance strategies. Prediction of wind turbine failures before they reach a catastrophic stage is critical to reduce the O & M cost due to unnecessary scheduled maintenance. A SCADA-data based condition monitoring system, which takes advantage of data already collected at the wind turbine controller, is a cost-effective way to monitor wind turbines for early warning of failures. This article proposes a methodology of fault prediction and automatically generating warning and alarm for wind turbine main bearings based on stored SCADA data using Artificial Neural Network (ANN). The ANN model of turbine main bearing normal behavior is established and then the deviation between estimated and actual values of the parameter is calculated. Furthermore, a method has been developed to generate early warning and alarm and avoid false warnings and alarms based on the deviation. In this way, wind farm operators are able to have enough time to plan maintenance, and thus, unanticipated downtime can be avoided and O & M costs can be reduced. 展开更多
关键词 Artificial Neural Network SCADA DATA Wind TURBINE automatic fault pre-diction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部